Skip to Content
Merck
  • Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel.

Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel.

Neuropharmacology (1996-01-01)
M Sanchez, O B McManus
ABSTRACT

High conductance calcium-activated (maxi-K) channels are potently blocked by a family of indole diterpenes that includes paxilline. Paxilline stimulates binding of charybdotoxin (ChTX) to maxi-K channels in vascular smooth muscle and blocks these channels in electrophysiological experiments (Knaus et al., 1994b). These results suggested that paxilline blocked maxi-K channels at a site distance from the ChTX binding site located near the external entrance to the pore. Here we have examined block of the cloned alpha subunit (slo) of the maxi-K channel in excised membrane patches after internal application of paxilline. Paxilline caused a reversible inhibition of channel currents with slow washout kinetics. In the presence of 10 muM intracellular calcium, paxilline blocked currents elicited by brief voltage pulses with a Ki of 1.9 nM and a Hill coefficient near one. Changing the internal calcium by the fold caused a two to three fold change in the Ki for paxilline block, with less block occurring at high calcium concentrations. Paxilline reduced the maximum of the conductance-voltage relation in a calcium-sensitive manner with less block occurring at high calcium concentrations, and caused a 20 mV depolarizing shift in the midpoint for channel opening. The time-course of relief of paxilline block by elevated calcium was more rapid than washout of paxilline suggesting an allosteric interaction between calcium and paxilline.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Paxilline, powder, ≥98% (HPLC)