Skip to Content
Merck

Optimization of dexamethasone mixed nanomicellar formulation.

AAPS PharmSciTech (2014-07-02)
Kishore Cholkar, Sudharshan Hariharan, Sriram Gunda, Ashim K Mitra
ABSTRACT

The purpose of this study was to develop a clear aqueous mixed nanomicellar formulation (MNF) of dexamethasone utilizing both D-α-tocopherol polyethylene glycol-1000 succinate (Vit E TPGS) and octoxynol-40 (Oc-40). In this study, Vit E TPGS and Oc-40 are independent variables. Formulations were prepared following solvent evaporation method. A three level full-factorial design was applied to optimize the formulation based on entrapment efficiency, size, and polydispersity index (PDI). A specific blend of Vit E TPGS and Oc-40 at a particular wt% ratio (4.5:2.0) produced excellent drug entrapment, loading, small mixed nanomicellar size and narrow PDI. Solubility of DEX in MNF is improved by ~6.3-fold relative to normal aqueous solubility. Critical micellar concentration (CMC) for blend of polymers (4.5:2.0) was found to be lower (0.012 wt%) than the individual polymers (Vit E TPGS (0.025 wt%) and Oc-40 (0.107 wt%)). No significant effect on mixed nanomicellar size and PDI with one-factor or multi-factor interactions was observed. Qualitative (1)H NMR studies confirmed absence of free drug in the outer aqueous MNF medium. MNF appeared to be highly stable. Cytotoxicity studies on rabbit primary corneal epithelial cells did not indicate any toxicity suggesting MNF of dexamethasone is safe and suitable for human topical ocular drops after further in vivo evaluations.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium phosphate dibasic, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Iodine, 99.999% trace metals basis
Sigma-Aldrich
Sodium phosphate monobasic solution, BioUltra, 5 M in H2O
Sigma-Aldrich
Iodine, ≥99.99% trace metals basis
Sigma-Aldrich
Sodium phosphate dibasic, 99.95% trace metals basis
Sigma-Aldrich
Methanol solution, suitable for NMR (reference standard), 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Sodium phosphate monobasic, BioReagent, Molecular Biology, anhydrous, ≥98%
Sigma-Aldrich
Sodium phosphate monobasic, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium phosphate monobasic, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Sodium phosphate dibasic, Molecular Biology, ≥98.5% (titration)
Sigma-Aldrich
Sodium phosphate dibasic, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium phosphate dibasic, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Sodium phosphate monobasic, meets USP testing specifications, anhydrous
Sigma-Aldrich
Sodium phosphate monobasic, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0% (titration)
Sigma-Aldrich
Dexamethasone, ≥98% (HPLC), powder
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
Dexamethasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
Sodium phosphate dibasic, purum p.a., anhydrous, ≥98.0% (T)
Sigma-Aldrich
Sodium phosphate dibasic, BioUltra, Molecular Biology, ≥99.5% (T)
Supelco
Dichloromethane, Selectophore, ≥99.5%
Supelco
Dichloromethane, analytical standard
Sigma-Aldrich
Dexamethasone, tested according to Ph. Eur.
Supelco
Dexamethasone, VETRANAL®, analytical standard
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Iodine, anhydrous, beads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Sodium phosphate monobasic, purum p.a., anhydrous, ≥99.0% (T)
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dexamethasone, meets USP testing specifications