Skip to Content
Merck
  • Visualizing the Inner Architecture of Poly(ϵ-caprolactone)-Based Biomaterials and Its Impact on Performance Optimization.

Visualizing the Inner Architecture of Poly(ϵ-caprolactone)-Based Biomaterials and Its Impact on Performance Optimization.

Macromolecular bioscience (2015-07-15)
Adam J P Bauer, Yitian Wu, Jianzhao Liu, Bingbing Li
ABSTRACT

The performance of poly(ϵ-caprolactone) (PCL)-based biomaterials is defined by spatial distributions of PCL's amorphous and crystalline domains. Unfortunately, directly visualizing their inner architectures has been challenging. This study demonstrates, the superior degradation selectivity of Candida antarctica lipase B (CALB) enzyme; when used at low concentrations, it preferentially breaks down the amorphous chains prior to the crystalline chains. Top-down dissection using this enzyme is performed on several PCL-based systems. Self-assembled nanolamellae (e.g., thin films) or hierarchically nanostructured crystalline skeletons (e.g., fibers) are clearly captured. Thus, the spatial distribution of the amorphous compartments can be precisely mapped out, which otherwise cannot be achieved.

MATERIALS
Product Number
Brand
Product Description

Carbon - Vitreous, rod, 200mm, diameter 10mm, glassy carbon
Carbon - Vitreous, foil, 100x100mm, thickness 6.0mm, glassy carbon
Carbon - Vitreous, foil, 100x100mm, thickness 2.0mm, glassy carbon
Carbon - Vitreous, foil, 8x8mm, thickness 0.5mm, glassy carbon
Carbon - Vitreous, rod, 50mm, diameter 1.0mm, glassy carbon
Carbon - Vitreous, foil, 25x25mm, thickness 0.5mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 3.0mm, glassy carbon
Carbon - Vitreous, rod, 5mm, diameter 3.0mm, glassy carbon
Carbon - Vitreous, rod, 200mm, diameter 7.0mm, glassy carbon
Carbon - Vitreous, tube, 100mm, outside diameter 10mm, inside diameter 3mm, wall thickness 3.5mm, glassy carbon
Carbon - Vitreous, rod, 200mm, diameter 5.0mm, glassy carbon
Carbon - Vitreous, foam, 150x150mm, thickness 2.5mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, rod, 100mm, diameter 7.0mm, glassy carbon
Carbon - Vitreous, rod, 200mm, diameter 3.0mm, glassy carbon
Carbon - Vitreous, foil, 10x10mm, thickness 4.0mm, glassy carbon
Carbon - Vitreous, foil, 10x10mm, thickness 1.0mm, glassy carbon
Carbon - Vitreous, foil, 50x50mm, thickness 4.0mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 1.0mm, glassy carbon
Carbon - Vitreous, foam, 150x150mm, thickness 3.2mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, rod, 200mm, diameter 1.0mm, glassy carbon
Carbon - Vitreous, foam, 150x150mm, 0.05g.cmué, porosity 96.5%, 24 pores/cm
Carbon - Vitreous, foam, 300x300mm, thickness 20mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, foil, 25x25mm, thickness 4.0mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 5.0mm, glassy carbon
Carbon - Vitreous, foam, 300x300mm, thickness 30mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, foil, 50x50mm, thickness 1.0mm, glassy carbon
Carbon - Vitreous, foil, 100x100mm, thickness 1.0mm, glassy carbon
Carbon - Vitreous, tube, 50mm, outside diameter 10mm, inside diameter 3mm, wall thickness 3.5mm, glassy carbon
Sigma-Aldrich
Carbon nanofibers, graphitized (iron-free), composed of conical platelets, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Carbon nanofibers, graphitized, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm