All Photos(4)



Indole-3-butyric acid

suitable for plant cell culture, BioReagent

4-(3-Indolyl)butyric acid, 4-(3-Indolyl)butanoic acid, IBA
Empirical Formula (Hill Notation):
CAS Number:
Molecular Weight:
EC Number:
MDL number:
PubChem Substance ID:

Quality Level

product line



cell culture | plant: suitable

Featured Industry


storage temp.


SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide


Indole-3-butyric acid (IBA) is auxin-family plant hormone (phytohormone). IBA is thought to be a precursor of indole-3-acetic acid (IAA) the most abundant and the basic auxin natively occurring and functioning in plants. IAA generates the majority of auxin effects in intact plants, and is the most potent native auxin.


1, 5, 25 g in poly bottle

Preparation Note


Skull and crossbones

Signal Word


Hazard Statements

Hazard Classifications

Acute Tox. 3 Oral

Storage Class Code

6.1C - Combustible, acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects



Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves

Certificate of Analysis

Certificate of Origin

Kamil Ruzicka et al.
Proceedings of the National Academy of Sciences of the United States of America, 107(23), 10749-10753 (2010-05-26)
Differential distribution of the plant hormone auxin within tissues mediates a variety of developmental processes. Cellular auxin levels are determined by metabolic processes including synthesis, degradation, and (de)conjugation, as well as by auxin transport across the plasma membrane. Whereas transport...
Lucia C Strader et al.
Plant physiology, 153(4), 1577-1586 (2010-06-22)
Genetic evidence in Arabidopsis (Arabidopsis thaliana) suggests that the auxin precursor indole-3-butyric acid (IBA) is converted into active indole-3-acetic acid (IAA) by peroxisomal beta-oxidation; however, direct evidence that Arabidopsis converts IBA to IAA is lacking, and the role of IBA-derived...
Fatima Naim et al.
PloS one, 15(1), e0227994-e0227994 (2020-01-25)
Introducing a new trait into a crop through conventional breeding commonly takes decades, but recently developed genome sequence modification technology has the potential to accelerate this process. One of these new breeding technologies relies on an RNA-directed DNA nuclease (CRISPR/Cas9)...
Lucia C Strader et al.
The Plant cell, 23(3), 984-999 (2011-03-17)
Levels of auxin, which regulates both cell division and cell elongation in plant development, are controlled by synthesis, inactivation, transport, and the use of storage forms. However, the specific contributions of various inputs to the active auxin pool are not...
Xing Liu et al.
Plant physiology, 158(4), 1988-2000 (2012-02-11)
The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied...

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service