Merck
  • Home
  • Search Results
  • In vitro and mouse studies supporting therapeutic utility of triiodothyroacetic acid in MCT8 deficiency.

In vitro and mouse studies supporting therapeutic utility of triiodothyroacetic acid in MCT8 deficiency.

Molecular endocrinology (Baltimore, Md.) (2014-11-13)
Simone Kersseboom, Sigrun Horn, W Edward Visser, Jiesi Chen, Edith C H Friesema, Catherine Vaurs-Barrière, Robin P Peeters, Heike Heuer, Theo J Visser
ABSTRACT

Monocarboxylate transporter 8 (MCT8) transports thyroid hormone (TH) across the plasma membrane. Mutations in MCT8 result in the Allan-Herndon-Dudley syndrome, comprising severe psychomotor retardation and elevated serum T3 levels. Because the neurological symptoms are most likely caused by a lack of TH transport into the central nervous system, the administration of a TH analog that does not require MCT8 for cellular uptake may represent a therapeutic strategy. Here, we investigated the therapeutic potential of the biologically active T3 metabolite Triac (TA3) by studying TA3 transport, metabolism, and action both in vitro and in vivo. Incubation of SH-SY5Y neuroblastoma cells and MO3.13 oligodendrocytes with labeled substrates showed a time-dependent uptake of T3 and TA3. In intact SH-SY5Y cells, both T3 and TA3 were degraded by endogenous type 3 deiodinase, and they influenced gene expression to a similar extent. Fibroblasts from MCT8 patients showed an impaired T3 uptake compared with controls, whereas TA3 uptake was similar in patient and control fibroblasts. In transfected cells, TA3 did not show significant transport by MCT8. Most importantly, treatment of athyroid Pax8-knockout mice and Mct8/Oatp1c1-double knockout mice between postnatal days 1 and 12 with TA3 restored T3-dependent neural differentiation in the cerebral and cerebellar cortex, indicating that TA3 can replace T3 in promoting brain development. In conclusion, we demonstrated uptake of TA3 in neuronal cells and in fibroblasts of MCT8 patients and similar gene responses to T3 and TA3. This indicates that TA3 bypasses MCT8 and may be used to improve the neural status of MCT8 patients.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
SAFC
L-Glutamine
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Dextrose, meets EP, BP, JP, USP testing specifications, anhydrous
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine
Supelco
L-Glutamine, certified reference material, TraceCERT®
Supelco
Dextrose, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
Roche
X-tremeGENE 9 DNA Transfection Reagent, Polymer reagent for transfecting common cell lines
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, ≥99% (TLC), film or powder
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, synthetic, ≥98.0% (TLC)
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Supelco
D-(+)-Glucose, analytical standard
Supelco
DL-Dithiothreitol solution, 1 M in H2O