Merck
  • Home
  • Search Results
  • Cleavage of the urokinase receptor (uPAR) on oral cancer cells: regulation by transforming growth factor - β1 (TGF-β1) and potential effects on migration and invasion.

Cleavage of the urokinase receptor (uPAR) on oral cancer cells: regulation by transforming growth factor - β1 (TGF-β1) and potential effects on migration and invasion.

BMC cancer (2017-05-21)
Synnove Norvoll Magnussen, Elin Hadler-Olsen, Daniela Elena Costea, Eli Berg, Cristiane Cavalcanti Jacobsen, Bente Mortensen, Tuula Salo, Inigo Martinez-Zubiaurre, Jan-Olof Winberg, Lars Uhlin-Hansen, Gunbjorg Svineng
ABSTRACT

Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion. Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - β1 (TGF-β1). The role of uPAR cleavage in cell proliferation and migration was analysed using real-time cell analysis and invasion was assessed using the myoma invasion model. We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF-β1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR. These results show that soluble factors in the tumour microenvironment, such as TGF-β1, PAI-1 and uPA, can influence the ratio of full length and uPAR (II-III) and thereby potentially effect cell migration and invasion. Resolving how uPAR cleavage is controlled is therefore vital for understanding how OSCC progresses and potentially provides new targets for therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-β-Actin−Peroxidase antibody, Mouse monoclonal, clone AC-15, purified from hybridoma cell culture
Sigma-Aldrich
Puromycin dihydrochloride, Ready Made Solution, from Streptomyces alboniger, 10 mg/mL in H2O
Sigma-Aldrich
Anti-Goat/Sheep IgG−Peroxidase antibody, Mouse monoclonal, clone GT-34, purified from hybridoma cell culture
Sigma-Aldrich
Aprotinin from bovine lung, lyophilized powder, 3-8 TIU/mg solid, BioReagent, suitable for cell culture
Sigma-Aldrich
Fetal Bovine Serum, non-USA origin, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Bovine Serum Albumin, heat shock fraction, pH 7, ≥98%
Sigma-Aldrich
Dulbecco′s Modified Eagle′s Medium - high glucose, With 4500 mg/L glucose, L-glutamine, and sodium bicarbonate, without sodium pyruvate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Penicillin-Streptomycin, Solution stabilized, with 10,000 units penicillin and 10 mg streptomycin/mL, 0.1 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
RPMI-1640 Medium, With L-glutamine and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture