Todas as fotos(1)

357294

Sigma-Aldrich

Indium

foil, thickness 0.25 mm, 99.99% trace metals basis

Sinônimo(s):
Indium element
Empirical Formula (Hill Notation):
In
Número CAS:
Peso molecular:
114.82
Número EC:
Número MDL:
ID de substância PubChem:
NACRES:
NA.23

Nível de qualidade

100

pressão de vapor

<0.01 mmHg ( 25 °C)

teor

99.99% trace metals basis

forma

foil

resistividade

8.37 μΩ-cm

espessura

0.25 mm

pf

156.6 °C (lit.)

densidade

7.3 g/mL at 25 °C (lit.)

SMILES string

[In]

InChI

1S/In

InChI key

APFVFJFRJDLVQX-UHFFFAOYSA-N

Procurando produtos similares? Visit Guia de comparação de produtos

Categorias relacionadas

Descrição geral

Indium foil is widely used in nuclear facilities to capture thermal neutrons, because it shows a high cross section of neutron capture reaction. Hence, it may be used in dosemeters to measure exposure. Indium foils were studied for simultaneous monitoring neutron and photon intensities in a reactor core.

Embalagem

100 cm2 in rigid mailer

Quantidade

  • 50 × 50 mm (approximately 4.6 g)
  • 100 × 100 mm (approximately 18.4 g)
  • 150 × 150 mm (approximately 41.4 g)

Pictogramas

Health hazard

Palavra indicadora

Danger

Frases de perigo

Declarações de precaução

Hazard Classifications

STOT RE 1 Inhalation

Órgãos-alvo

Lungs

Storage Class Code

6.1C - Combustible, acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK Alemanha

WGK 3

Ponto de fulgor (ºF)

Not applicable

Ponto de fulgor (ºC)

Not applicable

Equipamento de proteção individual

dust mask type N95 (US), Eyeshields, Gloves

Certificado de análise

Certificado de origem

Activation detection using indium foils for simultaneous monitoring neutron and photon intensities in a reactor core.
Chao JH and Chiang AC
Radiation Measurements, 45, 1024-1033 (2010)
Recalibration of Indium foil for personnel screening in criticality accidents
Takada C, et al.
Radiation Protection Dosimetry, 144(1-4), 575-579 (2010)
G W Shu et al.
Physical chemistry chemical physics : PCCP, 15(10), 3618-3622 (2013-02-06)
Nonradiative energy transfer from an InGaN quantum well to Ag nanoparticles is unambiguously demonstrated by the time-resolved photoluminescence. The distance dependence of the energy transfer rate is found to be proportional to 1/d(3), in good agreement with the prediction of...
Han-Youl Ryu et al.
Optics express, 21 Suppl 1, A190-A200 (2013-02-15)
We investigate the dependence of various efficiencies in GaN-based vertical blue light-emitting diode (LED) structures on the thickness and doping concentration of the n-GaN layer by using numerical simulations. The electrical efficiency (EE) and the internal quantum efficiency (IQE) are...
Annick Bay et al.
Optics express, 21 Suppl 1, A179-A189 (2013-02-15)
In this paper the design, fabrication and characterization of a bioinspired overlayer deposited on a GaN LED is described. The purpose of this overlayer is to improve light extraction into air from the diode's high refractive-index active material. The layer...

Artigos

Combinatorial Materials Science for Energy Applications

Can there be an effective strategy for finding breakthrough materials, since they are, by definition, unpredictable? One answer is found in Combinatorial Materials Science techniques, which represent a powerful approach to identifying new and unexpected materials.

Nossa equipe de cientistas tem experiência em todas as áreas de pesquisa, incluindo Life Sciences, ciência de materiais, síntese química, cromatografia, química analítica e muitas outras.

Entre em contato com a assistência técnica