Mapping effector genes at lupus GWAS loci using promoter Capture-C in follicular helper T cells.

Nature communications (2020-07-06)
Chun Su, Matthew E Johnson, Annabel Torres, Rajan M Thomas, Elisabetta Manduchi, Prabhat Sharma, Parul Mehra, Carole Le Coz, Michelle E Leonard, Sumei Lu, Kenyaita M Hodge, Alessandra Chesi, James Pippin, Neil Romberg, Struan F A Grant, Andrew D Wells
RESUMO

Systemic lupus erythematosus (SLE) is mediated by autoreactive antibodies that damage multiple tissues. Genome-wide association studies (GWAS) link >60 loci with SLE risk, but the causal variants and effector genes are largely unknown. We generated high-resolution spatial maps of SLE variant accessibility and gene connectivity in human follicular helper T cells (TFH), a cell type required for anti-nuclear antibodies characteristic of SLE. Of the ~400 potential regulatory variants identified, 90% exhibit spatial proximity to genes distant in the 1D genome sequence, including variants that loop to regulate the canonical TFH genes BCL6 and CXCR5 as confirmed by genome editing. SLE 'variant-to-gene' maps also implicate genes with no known role in TFH/SLE disease biology, including the kinases HIPK1 and MINK1. Targeting these kinases in TFH inhibits production of IL-21, a cytokine crucial for class-switched B cell antibodies. These studies offer mechanistic insight into the SLE-associated regulatory architecture of the human genome.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Phorbol 12-myristate 13-acetate, ≥99% (TLC), film or powder
Sigma-Aldrich
Ionomycin calcium salt from Streptomyces conglobatus, powder, ≥98% (HPLC)