During the lead optimization phase of drug discovery projects, the factors contributing to subsequent failure might include poor portfolio decision-making and a sub-optimal intellectual property (IP) position. The pharmaceutical industry has an ongoing need for new, safe medicines with a genuine biomedical benefit, a clean IP position and commercial viability. Inherent drug-like properties and chemical tractability are also essential for the smooth development of such agents. The introduction of bioisosteres, to improve the properties of a molecule and obtain new classes of compounds without prior art in the patent literature, is a key strategy used by medicinal chemists during the lead optimization process. Sila-substitution (C/Si exchange) of existing drugs is an approach to search for new drug-like candidates that have beneficial biological properties and a clear IP position. Some of the fundamental differences between carbon and silicon can lead to marked alterations in the physicochemical and biological properties of the silicon-containing analogues and the resulting benefits can be exploited in the drug design process.