Merck

Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson's disease.

Neurochemical research (2003-07-02)
S Engelborghs, B Marescau, P P De Deyn
RESUMO

To study changes in amino acid metabolism and biogenic amines in Parkinson's disease, we set up a prospective study and measured biogenic amines, their main metabolites, and 22 different amino acids, in cerebrospinal fluid of Parkinson's disease patients (n = 24) and age-matched controls (n = 30). A trend toward higher dopamine levels in Parkinson's disease patients was interpreted as an effect of treatment with levodopa and/or selegiline. Significantly lower concentrations of the dopamine metabolite 3,4-dihydroxyphenylacetic acid in the Parkinson's disease group might reflect dopaminergic cell loss. Our results revealed decreased serotonin catabolism that was interpreted as an effect of treatment with selegiline. Whereas all amino acid levels were unchanged, taurine was significantly lower in Parkinson's disease patients. Studies showed that taurine exerts a trophic action on the central nervous system. In this view, decreased taurine in a neurodegenerative disorder as Parkinson's disease deserves attention.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Titanium, wire, diam. 0.127 mm, 99.99% trace metals basis
Methionine, European Pharmacopoeia (EP) Reference Standard
Supelco
L-Methionine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Silicon, sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.999% trace metals basis
Sigma-Aldrich
Nickel, sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.95% trace metals basis
Supelco
L-Phenylalanine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, N-type, contains no dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer, <111>, P-type, contains boron as dopant, diam. × thickness 2 in. × 0.3 mm
Sigma-Aldrich
Silicon, wafer (single side polished), contains phosphorus as dopant, <111>, N-type, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains phosphorus as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains no dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, P-type, contains boron as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, nanopowder, <100 nm particle size (TEM), ≥98% trace metals basis
Sigma-Aldrich
Glycine 1 M solution
Supelco
L-Isoleucine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Titanium, sputtering target, diam. × thickness 3.00 in. × 0.125 in., 99.995% trace metals basis
Supelco
L-Isoleucine, certified reference material, TraceCERT®
Sigma-Aldrich
Copper, sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.95% trace metals basis
Sigma-Aldrich
Titanium, sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.995% trace metals basis
Sigma-Aldrich
Copper, nanopowder, 60-80 nm particle size (SAXS), ≥99.5% trace metals basis
Sigma-Aldrich
Copper, nanopowder, 40-60 nm particle size (SAXS), ≥99.5% trace metals basis
Sigma-Aldrich
Taurine, ≥99%
Sigma-Aldrich
DL-Homocysteine, ≥95% (titration)
Sigma-Aldrich
(−)-Epinephrine
Sigma-Aldrich
L-Citrulline, ≥98% (TLC)
Sigma-Aldrich
L-Serine, ReagentPlus®, ≥99% (HPLC)