Merck
  • Início
  • Resultados da busca
  • Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition.

Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition.

Micron (Oxford, England : 1993) (2006-04-25)
Alexandra E Porter
RESUMO

Silicon plays an important role in bone mineralization and formation and is therefore incorporated into a wide variety of medical implants and bone grafts used today. The significance of silicon (Si) can be understood through an analysis of the mechanisms of bone bonding to calcium containing biomaterials and through comparisons of hydroxyapatite (HA) and silicon-substituted hydroxyapatite (Si-HA). The addition of Si to HA causes a decrease in grain size that subsequently affects surface topography, dissolution-reprecipitation rates and the bone apposition process. Through the use of high-resolution transmission electron microscopy (HR-TEM) studies, the interactions between bone and silicon hydroxyapatite (Si-HA) at interfaces are reviewed and related to their impact on bone apposition and ultimately the performance of medical implants.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Silicon, pieces, 99.95% trace metals basis
Sigma-Aldrich
Silicon, powder, −325 mesh, 99% trace metals basis
Sigma-Aldrich
Silicon, powder, −60 mesh, 99.998% trace metals basis
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer, <111>, P-type, contains boron as dopant, diam. × thickness 2 in. × 0.3 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains no dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, nanopowder, <100 nm particle size (TEM), ≥98% trace metals basis
Sigma-Aldrich
Silicon, sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.999% trace metals basis
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains phosphorus as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), contains phosphorus as dopant, <111>, N-type, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, P-type, contains boron as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, N-type, contains no dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 3 in. × 0.5 mm