Merck
  • Home
  • Search Results
  • How should dietary guidance be given for mineral elements with beneficial actions or suspected of being essential?

How should dietary guidance be given for mineral elements with beneficial actions or suspected of being essential?

The Journal of nutrition (1996-09-01)
F H Nielsen
ABSTRACT

The term ultratrace elements, often used to indicate elements with an established, estimated or suspected requirement generally indicated by microgram/, could be applied to at least 20 elements. The quality of experimental evidence for nutritional essentiality varies widely for the ultratrace elements. Thus, although differing dietary guidance is appropriate for these elements, most need increased attention in future editions of the Recommended Dietary Allowances (RDAs) for the following reasons: (1) Increased interest in these elements by the public has been stimulated by the mass media; thus, responsible information about the usefulness of the ultratrace elements for health and well being is needed. (2) Risk assessments and toxicological standards are influenced by the RDAs. Authorative advice is required to prevent standards that obstruct the achievement of beneficial intakes of ultratrace elements. (3) An emerging new paradigm is that the determination of nutritional requirements should include consideration of the total health effects of nutrients, not just their roles in preventing deficiency pathology; some of the ultratrace elements have identified health benefits. Six ultratrace elements, iodine, selenium, manganese, molybdenum, chromium and boron (and cobalt as vitamin B12), merit specific RDAs. The term "estimated safe and adequate daily dietary intakes (ESADDI)" should not be used for any of the other ultratrace elements because of the misleading words "adequate" and "safe". "Apparent beneficial intake (ABI)" seems more appropriate for the elements with beneficial, if not essential, actions that can be extrapolated from animals to humans; these elements include arsenic, fluoride, lithium, nickel, silicon and vanadium. The evidence is too limited or controversial for the remaining ultratrace elements to even provide an ambiguous ABI. The amount found in a healthful diet probably should be a value provided for an appropriate intake for aluminum, bromide, cadmium, germanium, lead, rubidium, and tin.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Nickel, powder, <1 μm, 99.8% trace metals basis
Sigma-Aldrich
Nickel, foil, thickness 0.125 mm, ≥99.9%
Sigma-Aldrich
Germanium, powder, −100 mesh, ≥99.999% trace metals basis
Sigma-Aldrich
Nickel, wire, diam. 0.5 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Nickel, foil, thickness 0.25 mm, 99.995% trace metals basis
Sigma-Aldrich
Silicon, powder, −60 mesh, 99.998% trace metals basis
Sigma-Aldrich
Nickel, powder, <150 μm, 99.99% trace metals basis
Sigma-Aldrich
Raney®-Nickel, W.R. Grace and Co. Raney® 2400, slurry, in H2O, active catalyst
Sigma-Aldrich
Germanium, powder, −100 mesh, ≥99.99% trace metals basis
Sigma-Aldrich
Silicon, pieces, 99.95% trace metals basis
Sigma-Aldrich
Nickel, wire, diam. 0.25 mm, ≥99.9%
Sigma-Aldrich
Silicon, powder, −325 mesh, 99% trace metals basis
Sigma-Aldrich
Raney®-Nickel, W.R. Grace and Co. Raney® 2800, slurry, in H2O, active catalyst
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), contains phosphorus as dopant, <111>, N-type, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, P-type, contains boron as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer, <111>, P-type, contains boron as dopant, diam. × thickness 2 in. × 0.3 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains no dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains phosphorus as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, N-type, contains no dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, nanopowder, <100 nm particle size (TEM), ≥98% trace metals basis
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Nickel, sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.95% trace metals basis
Sigma-Aldrich
Silicon, sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.999% trace metals basis
Sigma-Aldrich
Nickel, powder, <50 μm, 99.7% trace metals basis
Sigma-Aldrich
Nickel, rod, diam. 6.35 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Nickel, foil, thickness 0.1 mm, 99.98% trace metals basis
Sigma-Aldrich
Nickel, wire, diam. 0.5 mm, ≥99.9% trace metals basis