Merck
  • Home
  • Search Results
  • Colorimetric detection of trivalent chromium in aqueous solution using tartrate-capped silver nanoparticles as probe.

Colorimetric detection of trivalent chromium in aqueous solution using tartrate-capped silver nanoparticles as probe.

Journal of nanoscience and nanotechnology (2013-11-20)
Yunbo Xu, Yangjun Dong, Xue Jiang, Ningning Zhu
ABSTRACT

This study describes a simple and highly selective method for the colorimetric detection of trivalent chromium (Cr3+) using tartrate-capped silver nanoparticles (AgNPs) as probe. The addition of tartrate to the initially prepared AgNPs gives tartrate-stabilized AgNPs ascribing to the electrostatic repulsion of the highly negatively charged tartrate ions covered on the surface of AgNPs. It is found that, in the presence of Cr3+ in aqueous solution, the aggregation of tartrate-stabilized AgNPs occurs. The color of AgNPs suspension changes from yellow to pink and the surface plasmon absorption band broadens and red shifts, which could be applied for the colorimetric detection of Cr3+ in aqueous solution. The utilization of tartrate-stabilized AgNPs as probe substantially increases the selectivity and sensitivity for colorimetric detection of Cr3+. Control experiments with the addition of over 14 other metal ions, such as Pb2+, Zn2+, Cr2O7(2-), Cd2+, Co2+, Cu2+, Al3+, Ni2+, Mn2+, Ba2+, Fe3+, Ca2+, Mg2+, Sr+ do not result in a distinct change in the color or in the spectrum of the suspension, indicating that these metal ions do not interfere with the colorimetric detection of Cr3+. Under the conditions employed here, A502/A393 (ratio of absorption value at 502 nm to 393 nm) is linear with the concentration of Cr3+ within a concentration range from 0.1 to 1.17 microM with a detection limit of 0.06 microM. This study may offer a simple, rapid and sensitive approach to colorimetric detection of Cr3+ in aqueous solution.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Silver, evaporation slug, diam. × L 0.6 cm × 1.2 cm, 99.99% trace metals basis
Sigma-Aldrich
Silver, granular, >250 μm, 99.99% trace metals basis
Sigma-Aldrich
Silver, wire, diam. 2.0 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Silver, wire, diam. 1.5 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Silver, rod, diam. 3.2 mm, 99.98% trace metals basis
Sigma-Aldrich
Silver, powder, 5-8 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Silver, flakes, 10 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Silver, powder, 2-3.5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Silver, powder, <45 μm, ≥99.99% trace metals basis
Sigma-Aldrich
Silver, wire, diam. 2.0 mm, 99.9% trace metals basis
Sigma-Aldrich
Silver, foil, thickness 0.5 mm, 99.9% trace metals basis
Sigma-Aldrich
Silver, foil, thickness 0.25 mm, 99.9% trace metals basis
Sigma-Aldrich
Silver, foil, thickness 0.025 mm, 99.9% trace metals basis
Sigma-Aldrich
Silver, wire, diam. 0.25 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Silver, wire, diam. 0.5 mm, 99.9% trace metals basis
Sigma-Aldrich
Silver, foil, thickness 0.075 mm, 99.9% trace metals basis
Sigma-Aldrich
Silver, foil, thickness 1.0 mm, 99.9% trace metals basis
Sigma-Aldrich
Silver, foil, thickness 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Silver, nanopowder, <100 nm particle size, contains PVP as dispersant, 99.5% trace metals basis
Sigma-Aldrich
Silver, wire, diam. 0.25 mm, 99.9% trace metals basis
Sigma-Aldrich
Chromium, powder, 99.5%, −100 mesh
Sigma-Aldrich
Silver, conductive paste
Sigma-Aldrich
Silver, nanopowder, <150 nm particle size, 99% trace metals basis
Sigma-Aldrich
Silver, foil, thickness 2.0 mm, 99.9% trace metals basis
Sigma-Aldrich
Chromium, chips, thickness ~2 mm, 99.5%
Sigma-Aldrich
Silver, foil, thickness 1.0 mm, 99.99% trace metals basis
Sigma-Aldrich
Chromium, chips, 99.995% trace metals basis
Sigma-Aldrich
Silver, foil, thickness 1.5 mm, 99.9% trace metals basis
Sigma-Aldrich
Silver, shot, 1-3 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Silver, wire, diam. 0.1 mm, 99.9% trace metals basis