• Início
  • Resultados da busca
  • Current flow of single-walled carbon nanotubes upon the encapsulation of beta-carotene by using conducting probe atomic force microscopy.

Current flow of single-walled carbon nanotubes upon the encapsulation of beta-carotene by using conducting probe atomic force microscopy.

Journal of nanoscience and nanotechnology (2013-11-20)
Jongtaek Lee, Taehee Park, Jungwoo Lee, Whikun Yi
RESUMO

Beta-carotene was inserted into single-walled carbon nanotubes (SWCNTs) by using the encapsulation method in a solution phase, and the energy transfer process was studied under irradiation of visible light. The encapsulation of beta-carotene inside SWCNTs was confirmed by ultraviolet (UV)/visible (Vis) and near-IR (N-IR) spectroscopy, and the stability of encapsulated beta-carotene was also confirmed by a UV irradiation experiment. The N-IR absorption spectrum revealed that the beta-carotene donated electrons to the SWCNTs upon encapsulation. We measured current flow through SWCNT bundles by using conducting probe atomic force microscopy (CP-AFM) while the samples were irradiated by green light (532 nm) and red light (650 nm). The current changed with the irradiation of 532 nm light, where the beta-carotene has its own absorption, but not with the irradiation of 650 nm light. From these results, we concluded that the encapsulated beta-carotene inside SWCNTs efficiently absorbed 532 nm light and excited electrons of beta-carotene might be transferred to the SWCNTs like an energy transfer process. Our conclusion was consistent with a previously suggested energy transfer theory between beta-carotene and SWCNTs.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Titanium(IV) oxide, nanopowder, 21 nm primary particle size (TEM), ≥99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, nanopowder, <25 nm particle size, 99.7% trace metals basis
Sigma-Aldrich
β-Carotene, synthetic, ≥93% (UV), powder
Sigma-Aldrich
β-Carotene, synthetic, ≥95% (HPLC), crystalline
Supelco
β-Carotene, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, 99.8% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, nanopowder, <100 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.127 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, puriss., meets analytical specification of Ph. Eur., BP, USP, 99-100.5%
Sigma-Aldrich
Titanium, foil, thickness 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, powder, <45 μm avg. part. size, 99.98% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
Sigma-Aldrich
Titanium, powder, −100 mesh, 99.7% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, 99.995% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, ≥99.98% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.025 mm, 99.98% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, sponge, 3-19 mm, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticle, <250 nm particle size (DLS), paste, 53-57 wt. % in diethylene glycol monobutyl ether/ethylene glycol, 99.9% trace metals basis
Sigma-Aldrich
Titanium, nanoparticles, dispersion, <100 nm particle size, in mineral oil, 98.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, contains 1% Mn as dopant, nanopowder, <100 nm particle size (BET), ≥97%
Sigma-Aldrich
Titanium, sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.995% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.81 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.25 mm, 99.99% trace metals basis
Sigma-Aldrich
Titanium, crystalline, 5-10 mm, ≥99.99% trace metals basis (purity exclusive of Na and K content)