Merck
  • Home
  • Search Results
  • Comparative antioxidant status in freshwater fish Carassius auratus exposed to eight imidazolium bromide ionic liquids: a combined experimental and theoretical study.

Comparative antioxidant status in freshwater fish Carassius auratus exposed to eight imidazolium bromide ionic liquids: a combined experimental and theoretical study.

Ecotoxicology and environmental safety (2014-02-18)
Chao Wang, Zhongbo Wei, Mingbao Feng, Liansheng Wang, Zunyao Wang
ABSTRACT

Imidazolium bromide ionic liquids such as 1-alkyl-3-methylimidazolium bromides ([AMIm]Br) and 1-alkyl-2,3-dimethylimidazolium bromides ([AMMIm]Br) are common-use organic salts. However, data on comparative toxicological effects of these ILs are lacking for fish. In this study, a combined experimental and theoretical approach was applied to compare and analyze the effects of these ILs on biochemical biomarkers in liver of Carassius auratus treated with different concentrations (2 and 20mg/L) for 3 and 16d. Changes in the activities of superoxide dismutase, catalase, glutathione peroxidase, and in the levels of reduced glutathione and malondialdehyde were detected, indicating that these ILs exhibit potential biotoxicity. The integrated biomarker response (IBR) index suggested that 1-hexyl-3-methylimidazolium bromide ([HMIm]Br), 1-octyl-3-methylimidazolium bromide ([OMIm]Br), 1-hexyl-2,3-dimethylimidazolium bromide ([HMMIm]Br), and 1-octyl-2,3-dimethylimidazolium bromide ([OMMIm]Br) showed the highest biotoxicity under different concentrations or exposure time, while 1-ethyl-3-methylimidazolium bromide ([EMIm]Br) always showed the least stressful power towards the test organism. Quantum chemical calculations (electronic parameters, frontier molecular orbitals, and Wiberg bond order) were also conducted to interpret the experimental results. Notably, some descriptors were correlated with the toxicity order. In addition, theoretical calculations provided some valuable information on metabolic pathways of these ILs, which may help to get better understanding on their environmental behavior and fate. In general, the toxicological determination and analysis of these ILs were performed with a combined experimental and theoretical method, which may contribute to the future ecotoxicological studies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glutathione Peroxidase from bovine erythrocytes, lyophilized powder, ≥300 units/mg protein
Sigma-Aldrich
Catalase from bovine liver, lyophilized powder, 2,000-5,000 units/mg protein
Sigma-Aldrich
Catalase from bovine liver, aqueous suspension, 10,000-40,000 units/mg protein
Sigma-Aldrich
Catalase from human erythrocytes, ≥90% (SDS-PAGE), buffered aqueous solution, ≥30,000 units/mg protein
Sigma-Aldrich
Catalase from bovine liver, aqueous solution, ≥30,000 units/mg protein
Sigma-Aldrich
Catalase from bovine liver, lyophilized powder, ≥10,000 units/mg protein
Sigma-Aldrich
Catalase from bovine liver, aqueous suspension, 40,000-60,000 units/mg protein (E1%/405)
Sigma-Aldrich
Catalase from bovine liver, powder, suitable for cell culture, 2,000-5,000 units/mg protein
Sigma-Aldrich
Catalase from Aspergillus niger, ammonium sulfate suspension, ≥4,000 units/mg protein
Sigma-Aldrich
Catalase from bovine liver, ≥20000 units/mg protein, lyophilized powder
Sigma-Aldrich
Catalase−Agarose, pH 5.4(isoelectric point), ammonium sulfate suspension, enzyme from bovine liver