Nanoscale adhesion forces between enamel pellicle proteins and hydroxyapatite.

Journal of dental research (2014-03-05)
D Vukosavljevic, J L Hutter, E J Helmerhorst, Y Xiao, W Custodio, F C Zaidan, F G Oppenheim, W L Siqueira
RESUMO

The acquired enamel pellicle (AEP) is important for minimizing the abrasion caused by parafunctional conditions as they occur, for instance, during bruxism. It is a remarkable feature of the AEP that a protein/peptide film can provide enough protection in normofunction to prevent teeth from abrasion and wear. Despite its obvious critical role in the protection of tooth surfaces, the essential adhesion features of AEP proteins on the enamel surface are poorly characterized. The objective of this study was to measure the adhesion force between histatin 5, a primary AEP component, and hydroxyapatite (HA) surfaces. Both biotinylated histatin 5 and biotinylated human serum albumin were allowed to adsorb to streptavidin-coated silica microspheres attached to atomic force microscope (AFM) cantilevers. A multimode AFM with a Nanoscope IIIa controller was used to measure the adhesion force between protein-functionalized silica microspheres attached to cantilever tips and the HA surface. The imaging was performed in tapping mode with a Si3N4 AFM cantilever, while the adhesion forces were measured in AFM contact mode. A collection of force-distance curves (~3,000/replicate) was obtained to generate histograms from which the adhesion forces between histatin 5 or albumin and the HA surface were measured. We found that histatin 5 exhibited stronger adhesion forces (90% >1.830 nN) to the HA surface than did albumin (90% > 0.282 nN). This study presents an objective approach to adhesion force measurements between histatin 5 and HA, and provides the experimental basis for measuring the same parameters for other AEP constituents. Such knowledge will help in the design of synthetic proteins and peptides with preventive and therapeutic benefits for tooth enamel.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Biotin, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Silicon dioxide, nanopowder, 10-20 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
LUDOX® HS-40 colloidal silica, 40 wt. % suspension in H2O
Supelco
Biotin, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
LUDOX® AS-40 colloidal silica, 40 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® TM-50 colloidal silica, 50 wt. % suspension in H2O
Sigma-Aldrich
Silica, nanoparticles, mesoporous, 200 nm particle size, pore size 4 nm
Sigma-Aldrich
Biotin, ≥99.0% (T)
Sigma-Aldrich
Silicon dioxide, nanopowder (spherical, porous), 5-20 nm particle size (TEM), 99.5% trace metals basis
Sigma-Aldrich
Silica, mesostructured, MCM-41 type (hexagonal)
Sigma-Aldrich
LUDOX® AM colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
Biotin, meets USP testing specifications
Sigma-Aldrich
Silica, nanopowder, spec. surface area 175-225 m2/g (BET), 99.8% trace metals basis
Sigma-Aldrich
LUDOX® SM colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® HS-30 colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® TMA colloidal silica, 34 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® TM-40 colloidal silica, 40 wt. % suspension in H2O
Sigma-Aldrich
Biotin, tested according to Ph. Eur.
Sigma-Aldrich
LUDOX® AS-30 colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
Hydroxyapatite, puriss., meets analytical specification of Ph. Eur., BP, FCC, E341, ≥90% (calculated on glowed substance)
Sigma-Aldrich
LUDOX® CL colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
Hydroxyapatite, purum p.a., ≥90% (as Ca3(PO4)2, KT)
Sigma-Aldrich
Hydroxyapatite, Type I, buffered aqueous suspension
Sigma-Aldrich
Silica
SAFC
BIOTIN
Sigma-Aldrich
LUDOX® LS colloidal silica, 30 wt. % suspension in H2O
Supelco
Biotin, certified reference material, TraceCERT®
Biotin, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Silica, mesostructured, MSU-F (cellular foam)
Sigma-Aldrich
LUDOX® CL-X colloidal silica, 45 wt. % suspension in H2O