• Início
  • Resultados da busca
  • Pegylated glucose gold nanoparticles for improved in-vivo bio-distribution and enhanced radiotherapy on cervical cancer.

Pegylated glucose gold nanoparticles for improved in-vivo bio-distribution and enhanced radiotherapy on cervical cancer.

Journal of biomedical nanotechnology (2014-05-09)
Feng Geng, James Z Xing, Jie Chen, Ray Yang, Yollanda Hao, Kun Song, Beihua Kong
RESUMO

Pharmacokinetics and bio-distribution are crucial factors affecting the performance of an intravenous drug. In this study, we explore the combined use of glucose and polyethylene glycol (PEG) ligands to further improve gold nanoparticle (GNP) pharmacokinetics and bio-distribution, with the aim of using the drug for in-vivo radiotherapy. The inclusion of PEG was found to significantly prolong the half-life period, where PEG-Glu-GNPs achieved 6.17 +/- 3.71 h, compared to 1.23 +/- 0.14 h for Glu-GNPs and 1.07 +/- 0.22 h for uncoated GNPs. Our data indicates that nanoparticle size impacts cell uptake performance, with 20 nm being the optimal diameter for cancer treatment applications. Although PEG-Glu-GNPs mainly distributed in the spleen, liver, lung, and kidneys, the concentration of PEG-Glu-GNPs in tumour tissue was 20 times higher than healthy cells in the uterus and ovaries, reaching 9.22 +/- 2.41 microg/g cancer tissue at 48 h after injection. This difference in uptake holds promise for selective tumor targeting which can in turn lead to more effective radiotherapy through the interaction of X-rays and GNPs. Specifically tumor size after 47 days of treatment had reduced to (769 +/- 92) mm3 compared to (1432 +/- 269) mm3 using X-rays alone and (3514 +/- 1818) mm3 without any treatment. Moreover, the mice remained healthy without statistically significant weight loss. Results of our pharmacokinetic and bio-distribution study as well as therapeutic data for PEG-Glu-GNPs in our tumor bearing animal model demonstrate that PEG-Glu-GNPs provide excellent in-vivo stability, tumor targeting function, and radiotherapeutic enhancement effects, providing useful insights for further clinical studies.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Gold, foil, thickness 0.127 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, nanopowder, <100 nm particle size, 99.9% trace metals basis
Sigma-Aldrich
Gold coated microscope slide, layer thickness 100 Å, 99.999% (Au)
Sigma-Aldrich
Gold, powder, <45 μm, 99.99% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, beads, 1-6 mm, 99.999% trace metals basis
Sigma-Aldrich
Gold coated microscope slide, layer thickness 1000 Å, 99.999% (Au)
Sigma-Aldrich
Gold, foil, thickness 0.025 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.5 mm, 99.999% trace metals basis
Sigma-Aldrich
Gold, powder, <10 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.1 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.1 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 1.0 mm, 99.99% trace metals basis
Gold, sphere, 50pcs, diameter 0.5mm, 99.99%
Sigma-Aldrich
Gold, foil, thickness 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, evaporation slug, diam. × L 0.3 cm × 0.6 cm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 1.0 mm, 99.997% trace metals basis
Gold, sphere, 100pcs, diameter 0.5mm, 99.99%
Sigma-Aldrich
Gold, foil, thickness 0.05 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, powder, <850 μm, ≥99.99% trace metals basis
Gold, sphere, 200pcs, diameter 0.5mm, 99.99%
Sigma-Aldrich
Gold, wire, diam. 0.25 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.127 mm, 99.99% trace metals basis
Gold, tube, 200mm, outside diameter 3.0mm, inside diameter 2.8mm, wall thickness 0.10mm, as drawn, 99.95%
Gold, insulated wire, 1m, conductor diameter 0.125mm, insulation thickness 0.014mm, polyester insulation, 99.99%
Gold, insulated wire, 0.1m, conductor diameter 0.10mm, insulation thickness 0.013mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, insulated wire, 0.1m, conductor diameter 0.125mm, insulation thickness 0.016mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, insulated wire, 0.2m, conductor diameter 0.025mm, insulation thickness 0.002mm, PTFE (polytetrafluoroethylene) insulation, 99.99%