Merck
  • Home
  • Search Results
  • Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part IV: investigation of the chromatographic efficiency dependent on the retention mode.

Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part IV: investigation of the chromatographic efficiency dependent on the retention mode.

Journal of chromatography. A (2014-05-27)
Ayat Allah Al-Massaedh, Ute Pyell
ABSTRACT

In our previous work we have described the synthesis, characterization, and optimization of the chromatographic efficiency of a highly crosslinked macroporous mixed-mode acrylamide-based monolithic stationary phase synthesized by in situ free radical copolymerization of cyclodextrin-solubilized N-adamantyl acrylamide, piperazinediacrylamide, methacrylamide and vinylsulfonic acid in aqueous medium in pre-treated fused silica capillaries of 100μm I.D. In the present work, we study with different classes of neutral analytes (with varied hydrophobicity) the impact of the type of retention mode (influenced by the type of analyte and the mobile phase composition) and the impact of the solute functionality on the chromatographic efficiency and peak symmetry with a monolith synthesized under optimized synthesis parameters. With this monolithic capillary high separation efficiencies (up to ca. 220,000m(-1)) are obtained for the separation of different analyte classes (alkylphenones, nitrotoluenes, and phenolic compounds with k=0.2-0.55) in the reversed-phase mode, in the normal-phase mode, and in the mixed mode. For neutral alkylanilines (k<0.25) plate numbers of about 300,000m(-1) are routinely reached in the reversed-phase elution mode. For phenolic solutes separated in a mixed mode there is a solute-specific influence on peak symmetry and chromatographic efficiency. With increasing efficiency of the monolith, axial diffusion becomes an important mechanism of band broadening. For those peaks, which do not show a significant asymmetry (asymmetry factor ≤1.05), it is confirmed that plate heights gained via the tangent method are equivalent to those gained via moment analysis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acrylamide solution, 40%, suitable for electrophoresis, sterile-filtered
Sigma-Aldrich
LUDOX® AS-30 colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® HS-40 colloidal silica, 40 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® AS-40 colloidal silica, 40 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® TM-50 colloidal silica, 50 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® TMA colloidal silica, 34 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® CL-X colloidal silica, 45 wt. % suspension in H2O
Supelco
Acrylamide solution, 40% in H2O, for molecular biology
Sigma-Aldrich
LUDOX® AM colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
Acrylamide, for molecular biology, ≥99% (HPLC)
Sigma-Aldrich
Acrylamide, suitable for electrophoresis, ≥99% (HPLC), powder
Sigma-Aldrich
Acrylamide, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Silica
Sigma-Aldrich
LUDOX® TM-40 colloidal silica, 40 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® LS colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
Silica, mesostructured, MSU-F (cellular foam)
Sigma-Aldrich
LUDOX® CL colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® SM colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® HS-30 colloidal silica, 30 wt. % suspension in H2O
Supelco
Acrylamide, analytical standard
Sigma-Aldrich
Silica, nanopowder, spec. surface area 175-225 m2/g (BET), 99.8% trace metals basis
Sigma-Aldrich
Acrylamide, purum, ≥98.0% (GC)
Sigma-Aldrich
Acrylamide, for Northern and Southern blotting, powder blend
Sigma-Aldrich
Silicon dioxide, nanopowder (spherical, porous), 5-20 nm particle size (TEM), 99.5% trace metals basis
Sigma-Aldrich
Silica, mesostructured, MCM-41 type (hexagonal)
Sigma-Aldrich
Silicon dioxide, nanopowder, 10-20 nm particle size (BET), 99.5% trace metals basis
Supelco
Acrylamide, certified reference material, TraceCERT®
Sigma-Aldrich
Silica, nanoparticles, mesoporous, 200 nm particle size, pore size 4 nm