A comparison of TiO2 and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer.

Journal of biomedical nanotechnology (2014-07-16)
Haijun Zhang, Yongfeng Shan, Lijun Dong
RESUMO

The TiO2 and ZnO nanoparticles are the most promising next-generation photodynamic therapy (PDT) photosensitizers. This paper reports a one-to-one comparison of TiO2 and ZnO nanoparticles as photosensitizers in photodynamic therapy of cancer. After incubating SMMC-7721 hepatocarcinoma cells with TiO2 and ZnO nanoparticles, we irradiated the cells with ultraviolet (UV) light and formation of intracellular reactive oxygen species (ROS) was monitored using the dichloro-dihydro-fluorescein diacetate (DCFH-DA) method. The cytotoxicities of ZnO and TiO2 nanoparticles as photosensitizers in cancer PDT were evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, the mRNA and protein expression levels of apoptosis-related gene, including Bax, Bcl-2, and Caspase 3 were examined using RT-PCR and Western blot to elucidate the possible molecular mechanisms involved. Our results demonstrated that both TiO2 and ZnO nanoparticles could generate ROS within the tumor cells after irradiation, which in turn could attack the cancer cells. The caspase-dependent apoptosis was thus induced, resulting in anticancer activity. When the therapeutic effects were compared, no differences between the TiO2 and ZnO nanoparticles were observed for PDT. Either TiO2 or ZnO nanoparticles can therefore be used in the near future as alternative photosensitizers in targeted tumor PDT when light is directly focused on the lesion.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Titanium(IV) oxide, nanopowder, 21 nm primary particle size (TEM), ≥99.5% trace metals basis
Sigma-Aldrich
Zinc oxide, nanopowder, <100 nm particle size
Sigma-Aldrich
Titanium(IV) oxide, anatase, nanopowder, <25 nm particle size, 99.7% trace metals basis
Sigma-Aldrich
Zinc oxide, nanopowder, <50 nm particle size (BET), >97%
Sigma-Aldrich
Zinc oxide, ReagentPlus®, powder, <5 μm particle size, 99.9%
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, 99.8% trace metals basis
Sigma-Aldrich
Zinc oxide, puriss. p.a., ACS reagent, ≥99.0% (KT)
Sigma-Aldrich
Zinc oxide, dispersion, nanoparticles, <100 nm particle size (TEM), ≤40 nm avg. part. size (APS), 20 wt. % in H2O
Sigma-Aldrich
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, nanopowder, <100 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Zinc oxide, 99.99% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.127 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, puriss., meets analytical specification of Ph. Eur., BP, USP, 99-100.5%
Sigma-Aldrich
Titanium, foil, thickness 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, powder, <45 μm avg. part. size, 99.98% trace metals basis
Sigma-Aldrich
Titanium, powder, −100 mesh, 99.7% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, 99.995% trace metals basis
Sigma-Aldrich
Zinc oxide, dispersion, nanoparticles, 40 wt. % in ethanol, <130 nm particle size
Sigma-Aldrich
Titanium(IV) oxide, rutile, ≥99.98% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.025 mm, 99.98% trace metals basis
Sigma-Aldrich
Zinc oxide, 99.999% trace metals basis
Sigma-Aldrich
Zinc oxide, nanowires, size × L × 1 μm
Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, sponge, 3-19 mm, 99.5% trace metals basis
Sigma-Aldrich
Zinc oxide, puriss., meets analytical specification of Ph. Eur., BP, USP, 99-100.5% (calc. for dried substance)
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticle, <250 nm particle size (DLS), paste, 53-57 wt. % in diethylene glycol monobutyl ether/ethylene glycol, 99.9% trace metals basis
Supelco
Zinc oxide, analytical standard