Merck
  • Home
  • Search Results
  • Sensory-specific modulation of adult neurogenesis in sensory structures is associated with the type of stem cell present in the neurogenic niche of the zebrafish brain.

Sensory-specific modulation of adult neurogenesis in sensory structures is associated with the type of stem cell present in the neurogenic niche of the zebrafish brain.

The European journal of neuroscience (2014-09-19)
Benjamin W Lindsey, Sabrina Di Donato, Jan Kaslin, Vincent Tropepe
ABSTRACT

Teleost fishes retain populations of adult stem/progenitor cells within multiple primary sensory processing structures of the mature brain. Though it has commonly been thought that their ability to give rise to adult-born neurons is mainly associated with continuous growth throughout life, whether a relationship exists between the processing function of these structures and the addition of new neurons remains unexplored. We investigated the ultrastructural organisation and modality-specific neurogenic plasticity of niches located in chemosensory (olfactory bulb, vagal lobe) and visual processing (periventricular grey zone, torus longitudinalis) structures of the adult zebrafish (Danio rerio) brain. Transmission electron microscopy showed that the cytoarchitecture of sensory niches includes many of the same cellular morphologies described in forebrain niches. We demonstrate that cells with a radial-glial phenotype are present in chemosensory niches, while the niche of the caudal tectum contains putative neuroepithelial-like cells instead. This was supported by immunohistochemical evidence showing an absence of glial markers, including glial fibrillary acidic protein, glutamine synthetase, and S100β in the tectum. By exposing animals to sensory assays we further illustrate that stem/progenitor cells and their neuronal progeny within sensory structures respond to modality-specific stimulation at distinct stages in the process of adult neurogenesis - chemosensory niches at the level of neuronal survival and visual niches in the size of the stem/progenitor population. Our data suggest that the adult brain has the capacity for sensory-specific modulation of adult neurogenesis and that this property may be associated with the type of stem cell present in the niche.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methylene Blue solution, for microscopy, concentrate according to Ehrlich, concentrated, aqueous solution
Sigma-Aldrich
Methylene Blue solution, 0.05 wt. % in H2O
Sigma-Aldrich
Methylene blue, certified by the Biological Stain Commission
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Methylene Blue solution, suitable for microbiology
Sigma-Aldrich
Methylene Blue solution, for microscopy
Supelco
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.