Merck
  • Início
  • Resultados da busca
  • Angiotensin II type 2 receptor regulates ROMK-like K⁺ channel activity in the renal cortical collecting duct during high dietary K⁺ adaptation.

Angiotensin II type 2 receptor regulates ROMK-like K⁺ channel activity in the renal cortical collecting duct during high dietary K⁺ adaptation.

American journal of physiology. Renal physiology (2014-08-08)
Yuan Wei, Yi Liao, Beth Zavilowitz, Jin Ren, Wen Liu, Pokman Chan, Rajeev Rohatgi, Genevieve Estilo, Edwin K Jackson, Wen-Hui Wang, Lisa M Satlin
RESUMO

The kidney adjusts K⁺ excretion to match intake in part by regulation of the activity of apical K⁺ secretory channels, including renal outer medullary K⁺ (ROMK)-like K⁺ channels, in the cortical collecting duct (CCD). ANG II inhibits ROMK channels via the ANG II type 1 receptor (AT1R) during dietary K⁺ restriction. Because AT1Rs and ANG II type 2 receptors (AT2Rs) generally function in an antagonistic manner, we sought to characterize the regulation of ROMK channels by the AT2R. Patch-clamp experiments revealed that ANG II increased ROMK channel activity in CCDs isolated from high-K⁺ (HK)-fed but not normal K⁺ (NK)-fed rats. This response was blocked by PD-123319, an AT2R antagonist, but not by losartan, an AT1R antagonist, and was mimicked by the AT2R agonist CGP-42112. Nitric oxide (NO) synthase is present in CCD cells that express ROMK channels. Blockade of NO synthase with N-nitro-l-arginine methyl ester and free NO with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt completely abolished ANG II-stimulated ROMK channel activity. NO enhances the synthesis of cGMP, which inhibits phosphodiesterases (PDEs) that normally degrade cAMP; cAMP increases ROMK channel activity. Pretreatment of CCDs with IBMX, a broad-spectrum PDE inhibitor, or cilostamide, a PDE3 inhibitor, abolished the stimulatory effect of ANG II on ROMK channels. Furthermore, PKA inhibitor peptide, but not an activator of the exchange protein directly activated by cAMP (Epac), also prevented the stimulatory effect of ANG II. We conclude that ANG II acts at the AT2R to stimulate ROMK channel activity in CCDs from HK-fed rats, a response opposite to that mediated by the AT1R in dietary K⁺-restricted animals, via a NO/cGMP pathway linked to a cAMP-PKA pathway.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
3-Isobutyl-1-methylxanthine, ≥99% (HPLC), powder
Sigma-Aldrich
3-Isobutyl-1-methylxanthine, ≥99%, BioUltra
Sigma-Aldrich
8-Bromoguanosine 3′,5′-cyclic monophosphate sodium salt, ≥98% (HPLC), powder
Sigma-Aldrich
Uracil, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Uracil, ≥99.0%
Sigma-Aldrich
Potassium, cubes (in mineral oil), 99.5% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Potassium hydride, in paraffin
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Potassium hydride, 30 wt % dispersion in mineral oil
Sigma-Aldrich
Cilostamide, phosphodiesterase inhibitor
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Potassium, chunks (in mineral oil), 98% trace metals basis
Supelco
Uracil, Pharmaceutical Secondary Standard; Certified Reference Material
Fluorouracil impurity C, European Pharmacopoeia (EP) Reference Standard