• Início
  • Resultados da busca
  • Profiling of stable isotope enrichment in specialized metabolites using liquid chromatography and multiplexed nonselective collision-induced dissociation.

Profiling of stable isotope enrichment in specialized metabolites using liquid chromatography and multiplexed nonselective collision-induced dissociation.

Analytical chemistry (2014-10-10)
Zhenzhen Wang, A Daniel Jones
RESUMO

Engineering of specialized metabolites in plants, microbes, and other organisms is hindered by significant knowledge gaps about metabolic pathways responsible for metabolite accumulation and degradation. While isotopic tracers have provided important information about metabolic fluxes in central metabolism, limitations of mass spectrometric strategies for quantifying stable isotope incorporation into both intact metabolites and specific substructures have slowed extension of these techniques to large specialized metabolites. This report describes the application of electrospray ionization with data-independent multiplexed nonselective collision induced dissociation (CID) on a time-of-flight mass spectrometer. This strategy yields quasi-simultaneous collection, on the chromatographic time scale, of mass spectra with different degrees of fragment ion formation without biases introduced by precursor mass selection or selective ion activation and provides measurements of stable isotope enrichments in intact metabolites and individual substructures. The utility and precision of these analyses is demonstrated by labeling acylsugar metabolites in glandular trichomes of tomato (Solanum lycopersicum) using (13)CO2 and analyzing (13)C enrichments in acylsugar specialized metabolites. The high precision and avoidance of mass bias provide a promising tool for extending metabolic flux analyses to complex specialized metabolites in a wide range of organisms.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
2-Propanol, BioReagent, for molecular biology, ≥99.5%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Supelco
Methanol, analytical standard
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
Sulfuric acid, ACS reagent, 95.0-98.0%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
Sulfuric acid, 99.999%
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Formic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Supelco
Sulfuric acid concentrate, 0.1 M H2SO4 in water (0.2N), eluent concentrate for IC
Sigma-Aldrich
Formic acid, puriss., meets analytical specifications of DAC, FCC, 98.0-100%