Merck
  • Home
  • Search Results
  • Transcriptomic and proteomic analyses of Amphiura filiformis arm tissue-undergoing regeneration.

Transcriptomic and proteomic analyses of Amphiura filiformis arm tissue-undergoing regeneration.

Journal of proteomics (2014-09-03)
Sruthi Purushothaman, Sandeep Saxena, Vuppalapaty Meghah, Cherukuvada V Brahmendra Swamy, Olga Ortega-Martinez, Sam Dupont, Mohammed Idris
ABSTRACT

The extensive arm regeneration of brittle stars following amputation is becoming increasingly recognized as a model system for understanding cellular differentiation and regeneration in a whole animal context. In this study we have used the emerging brittle star model Amphiura filiformis to investigate the initial step of the regeneration process- the early repair phase, at the transcriptome and proteome level. Arm tissues were collected at 1 and 3days post amputation and were analyzed for the differential expression at the transcript and proteome level. A total of 694 genes and 194 proteins were found undergoing differential expression during the initiation of regeneration process. Comparison of transcriptomic and proteomic analysis showed 23 genes/proteins commonly between them with 40% having similar expression patterns. Validation of 33 differentially regulated genes based on RTPCR showed 22 and 19 genes expression as similar to the transcriptome expression during the first and third day post amputation respectively. Based on cellular network and molecular pathway analysis it was found that the differentially regulated transcripts and proteins were involved in structural and developmental network pathways such as cytoskeleton remodeling, cell adhesion integrin and translation initiation pathways for the instigation of regeneration process in brittle star. This study identified various genes and proteins involved in brittle star arm regeneration based on high throughput transcriptomics and proteomics studies. In this study the genes and proteins associated with regeneration were validated and mapped for biological and molecular pathways involved in regeneration mechanism. This study will lead to discovery of marker associated with tissue or organ regeneration.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ammonium sulfate, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Phosphoric acid, BioReagent, suitable for insect cell culture, 85%
Sigma-Aldrich
Ammonium sulfate, BioXtra, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, for molecular biology, ≥99.0%
Sigma-Aldrich
Phosphoric acid, BioUltra, ≥85% (T)
Sigma-Aldrich
Ammonium sulfate, BioUltra, ≥99.0% (T)
Supelco
Ammonium sulfate, analytical standard, for Nitrogen Determination According to Kjeldahl Method, traceable to NIST SRM 194
Sigma-Aldrich
Ammonium sulfate, anhydrous, Redi-Dri, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.0%
Sigma-Aldrich
Phosphoric acid, puriss., meets analytical specification of Ph. Eur., BP, NF, FCC, 85.0-88.0%
Sigma-Aldrich
Phosphoric acid, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Phosphoric acid, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Phosphoric acid, puriss. p.a., crystallized, ≥99.0% (T)
Sigma-Aldrich
Ammonium sulfate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Phosphoric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥85%
Sigma-Aldrich
Ammonium-14N2 sulfate, 99.99 atom % 14N
Sigma-Aldrich
Phosphoric acid, ≥85 wt. % in H2O, ≥99.999% trace metals basis
Sigma-Aldrich
Phosphoric acid, 85 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
Phosphoric acid, crystalline, ≥99.999% trace metals basis
Sigma-Aldrich
Phosphoric acid-16O4 solution, 70 wt. % in D2O, 99.9 atom % 16O
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Supelco
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Ammonium sulfate, 99.999% trace metals basis
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ammonium-14N2 sulfate solution, 40 wt. % in H2O, 99.99 atom % 14N
Sigma-Aldrich
Phosphoric acid solution, 85 wt. % in H2O, FCC, FG
Sigma-Aldrich
Ammonium sulfate-14N2 solution, 40 wt. % in H2O, 99.99 atom % 14N
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 4.2 mm × 8 in. , WGS-5BL Coaxial NMR tube