Merck
  • Início
  • Resultados da busca
  • Effect of protic ionic liquid and surfactant structure on partitioning of polyoxyethylene non-ionic surfactants.

Effect of protic ionic liquid and surfactant structure on partitioning of polyoxyethylene non-ionic surfactants.

Chemphyschem : a European journal of chemical physics and physical chemistry (2014-05-28)
Inga L Topolnicki, Paul A FitzGerald, Rob Atkin, Gregory G Warr
RESUMO

The partitioning constants and Gibbs free energies of transfer of poly(oxyethylene) n-alkyl ethers between dodecane and the protic ionic liquids (ILs) ethylammonium nitrate (EAN) and propylammonium nitrate (PAN) are determined. EAN and PAN have a sponge-like nanostructure that consists of interpenetrating charged and apolar domains. This study reveals that the ILs solvate the hydrophobic and hydrophilic parts of the amphiphiles differently. The ethoxy groups are dissolved in the polar region of both ILs by means of hydrogen bonds. The environment is remarkably water-like and, as in water, the solubility of the ethoxy groups in EAN decreases on warming, which underscores the critical role of the IL hydrogen-bond network for solubility. In contrast, amphiphile alkyl chains are not preferentially solvated by the charged or uncharged regions of the ILs. Rather, they experience an average IL composition and, as a result, partitioning from dodecane into the IL increases as the cation alkyl chain is lengthened from ethyl to propyl, because the IL apolar volume fraction increases. Together, these results show that surfactant dissolution in ILs is related to structural compatibility between the head or tail group and the IL nanostructure. Thus, these partitioning studies reveal parameters for the effective molecular design of surfactants in ILs.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Aluminum oxide, activated, acidic, Brockmann I
Sigma-Aldrich
Aluminum oxide, activated, neutral, Brockmann I
Sigma-Aldrich
Dodecane, ReagentPlus®, ≥99%
Sigma-Aldrich
Aluminum oxide, powder, primarily α phase, ≤10 μm avg. part. size, 99.5% trace metals basis
Sigma-Aldrich
Aluminum oxide, activated, basic, Brockmann I
Sigma-Aldrich
Aluminum oxide, pore size 58 Å, ~150 mesh
Sigma-Aldrich
Aluminum oxide, Type WN-6, Neutral, Activity Grade Super I
Sigma-Aldrich
Aluminum oxide, fused, powder, primarily α-phase, -325 mesh
Sigma-Aldrich
Aluminum oxide, calcined, powder, primarily α-phase, 100-325 mesh
Sigma-Aldrich
Aluminum oxide, fused, powder, primarily α-phase, 100-200 mesh
Sigma-Aldrich
Aluminum oxide, powder, 99.99% trace metals basis
Sigma-Aldrich
Aluminum oxide, Corundum, α-phase, -100 mesh
Sigma-Aldrich
Aluminum oxide, pellets, 3 mm
Sigma-Aldrich
Aluminum oxide, activated, acidic, Brockmann I, free-flowing, Redi-Dri
Sigma-Aldrich
Aluminum oxide, activated, neutral, Brockmann I, free-flowing, Redi-Dri
Supelco
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Aluminum oxide, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
Aluminum oxide, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O
Sigma-Aldrich
Aluminum oxide, single crystal substrate, <0001>
Sigma-Aldrich
Aluminum oxide, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Supelco
Density Standard 749 kg/m3, H&D Fitzgerald Ltd. Quality
Sigma-Aldrich
Aluminum oxide, 99.997% trace metals basis
Sigma-Aldrich
Dodecane, anhydrous, ≥99%
Sigma-Aldrich
Aluminum oxide, nanowires, diam. × L 2-6 nm × 200-400 nm
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Aluminum oxide, nanopowder, <50 nm particle size (TEM)
Supelco
Dodecane, analytical standard
Supelco
Aluminum oxide, for the determination of hydrocarbons
Supelco
Aluminum oxide, activated, neutral, Brockmann Activity I