Merck

Plasma miR-208 as a useful biomarker for drug-induced cardiotoxicity in rats.

Journal of applied toxicology : JAT (2014-08-06)
Yoko Nishimura, Chiaki Kondo, Yuji Morikawa, Yutaka Tonomura, Mikinori Torii, Jyoji Yamate, Takeki Uehara
RESUMO

Cardiotoxicity is one of the major safety concerns in drug development. Therefore, detecting and monitoring cardiotoxicity throughout preclinical and clinical studies is important for pharmaceutical companies. The present study was conducted in order to explore a plasma miRNA biomarker for cardiotoxicity in rats. As organ specificity is an important factor for a biomarker, we analyzed the miRNA microarray dataset in 55 organs/tissues in normal male rats. Based on this analysis, 5 miRNAs consisting of miR-208 (heart-specific), miR-1, miR-133a, miR-133b (heart and skeletal muscle-specific) and miR-206 (skeletal muscle-specific) were selected. Next, we evaluated the usefulness of those 5 miRNAs as circulating biomarkers in rats administered with single-dose isoproterenol or doxorubicin. Plasma miR-208 was consistently increased through 24 h after dosing in rats administered with isoproterenol, whereas plasma concentrations of cardiac troponin (cTn) showed transient elevation. In contrast, the plasma levels of miR-1, miR-133a, miR-133a and miR-206 were elevated after treatment with doxorubicin, probably as a result of skeletal muscle toxicity. Additionally, the plasma miR-208 level was elevated even after repeat-dose administration (once daily for 7 days) of isoproterenol under which the pathological condition proceeded to the sub-chronic phase such as fibrosis. Thus, our data suggest that miR-208 is a promising plasma biomarker for cardiotoxicity in rats. Monitoring of plasma miR-208 levels in rats may lead to more accurate evaluation of cardiotoxicity in preclinical studies.

MATERIAIS
Número do produto
Marca
Descrição do produto

Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Doxorubicin hydrochloride, 98.0-102.0% (HPLC)
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), for GC derivatization, LiChropur
Sigma-Aldrich
Doxorubicin hydrochloride, suitable for fluorescence, 98.0-102.0% (HPLC)
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Doxorubicin hydrochloride, European Pharmacopoeia (EP) Reference Standard
Paracetamol, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in diethyl ether
Sigma-Aldrich
Hydrochloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Hydrochloric acid, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Hydrogen chloride solution, 2.0 M in diethyl ether
Sigma-Aldrich
Hydrogen chloride solution, 4.0 M in dioxane
Sigma-Aldrich
Hydrochloric acid, puriss., 24.5-26.0%
Sigma-Aldrich
Hydrochloric acid, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Acetaminophen, analytical standard
Sigma-Aldrich
Acetaminophen, BioXtra, ≥99.0%
Sigma-Aldrich
Acetaminophen, meets USP testing specifications, 98.0-102.0%, powder
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Supelco
Acetaminophen, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Acetaminophen solution, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®