Merck
  • Home
  • Search Results
  • Persistent organic pollutant levels in human visceral and subcutaneous adipose tissue in obese individuals--depot differences and dysmetabolism implications.

Persistent organic pollutant levels in human visceral and subcutaneous adipose tissue in obese individuals--depot differences and dysmetabolism implications.

Environmental research (2014-06-21)
Diogo Pestana, Gil Faria, Carla Sá, Virgínia C Fernandes, Diana Teixeira, Sónia Norberto, Ana Faria, Manuela Meireles, Cláudia Marques, Luísa Correia-Sá, Ana Cunha, João T Guimarães, António Taveira-Gomes, Ana Cristina Santos, Valentina F Domingues, Cristina Delerue-Matos, Rosário Monteiro, Conceição Calhau
ABSTRACT

The role of persistent organic pollutants (POPs) with endocrine disrupting activity in the aetiology of obesity and other metabolic dysfunctions has been recently highlighted. Adipose tissue (AT) is a common site of POPs accumulation where they can induce adverse effects on human health. To evaluate the presence of POPs in human visceral (vAT) and subcutaneous (scAT) adipose tissue in a sample of Portuguese obese patients that underwent bariatric surgery, and assess their putative association with metabolic disruption preoperatively, as well as with subsequent body mass index (BMI) reduction. AT samples (n=189) from obese patients (BMI ≥ 35) were collected and the levels of 13 POPs were determined by gas chromatography with electron-capture detection (GC-ECD). Anthropometric and biochemical data were collected at the time of surgery. BMI variation was evaluated after 12 months and adipocyte size was measured in AT samples. Our data confirm that POPs are pervasive in this obese population (96.3% of detection on both tissues), their abundance increasing with age (RS=0.310, p<0.01) and duration of obesity (RS=0.170, p<0.05). We observed a difference in AT depot POPs storage capability, with higher levels of ΣPOPs in vAT (213.9 ± 204.2 compared to 155.1 ± 147.4 ng/g of fat, p<0.001), extremely relevant when evaluating their metabolic impact. Furthermore, there was a positive correlation between POP levels and the presence of metabolic syndrome components, namely dysglycaemia and hypertension, and more importantly with cardiovascular risk (RS=0.277, p<0.01), with relevance for vAT (RS=0.315, p<0.01). Finally, we observed an interesting relation of higher POP levels with lower weight loss in older patients. Our sample of obese subjects allowed us to highlight the importance of POPs stored in AT on the development of metabolic dysfunction in a context of obesity, shifting the focus to their metabolic effects and not only for their recognition as environmental obesogens.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
o-Xylene, anhydrous, 97%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Hexane, anhydrous, 95%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethanol, purum, secunda spirit, denaturated with 2% 2-butanone and 0.5% 4-methyl-2-pentanone, S15, ~96% (based on denaturant-free substance)
Supelco
Ethanol, standard for GC
Supelco
Hexane, analytical standard
Supelco
o-Xylene, analytical standard
Supelco
Hematoxylin
Sigma-Aldrich
Hematoxylin, certified by the Biological Stain Commission
Supelco
o-Xylene, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Dieldrin solution, certified reference material, 1000 μg/mL in methanol
Sigma-Aldrich
Ethanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Supelco
Endosulfan, PESTANAL®, analytical standard
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
Sigma-Aldrich
Ethyl alcohol, Pure, 160 proof, Excise Tax-free, Permit for use required
Sigma-Aldrich
Hexane, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥95%
Supelco
o-Xylene, suitable for HPLC, 98%