Merck
  • Home
  • Search Results
  • An interlaboratory comparison of sizing and counting of subvisible particles mimicking protein aggregates.

An interlaboratory comparison of sizing and counting of subvisible particles mimicking protein aggregates.

Journal of pharmaceutical sciences (2014-11-26)
Dean C Ripple, Christopher B Montgomery, Zhishang Hu
ABSTRACT

Accurate counting and sizing of protein particles has been limited by discrepancies of counts obtained by different methods. To understand the bias and repeatability of techniques in common use in the biopharmaceutical community, the National Institute of Standards and Technology has conducted an interlaboratory comparison for sizing and counting subvisible particles from 1 to 25 μm. Twenty-three laboratories from industry, government, and academic institutions participated. The circulated samples consisted of a polydisperse suspension of abraded ethylene tetrafluoroethylene particles, which closely mimic the optical contrast and morphology of protein particles. For restricted data sets, agreement between data sets was reasonably good: relative standard deviations (RSDs) of approximately 25% for light obscuration counts with lower diameter limits from 1 to 5 μm, and approximately 30% for flow imaging with specified manufacturer and instrument setting. RSDs of the reported counts for unrestricted data sets were approximately 50% for both light obscuration and flow imaging. Differences between instrument manufacturers were not statistically significant for light obscuration but were significant for flow imaging. We also report a method for accounting for differences in the reported diameter for flow imaging and electrical sensing zone techniques; the method worked well for diameters greater than 15 μm.

MATERIALS
Product Number
Brand
Product Description

Supelco
Aluminum oxide, for the determination of hydrocarbons
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Supelco
Aluminum oxide, activated, neutral, Brockmann Activity I
Sigma-Aldrich
Aluminum oxide, 99.997% trace metals basis
Sigma-Aldrich
Aluminum oxide, nanowires, diam. × L 2-6 nm × 200-400 nm
Sigma-Aldrich
Aluminum oxide, nanopowder, <50 nm particle size (TEM)
Sigma-Aldrich
Aluminum oxide, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
Aluminum oxide, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
Aluminum oxide, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O
Sigma-Aldrich
Aluminum oxide, single crystal substrate, <0001>
Sigma-Aldrich
Aluminum oxide, activated, neutral, Brockmann I, free-flowing, Redi-Dri
Sigma-Aldrich
Aluminum oxide, activated, acidic, Brockmann I, free-flowing, Redi-Dri
Sigma-Aldrich
Aluminum oxide, fused, powder, primarily α-phase, -325 mesh
Sigma-Aldrich
Aluminum oxide, fused, powder, primarily α-phase, 100-200 mesh
Sigma-Aldrich
Aluminum oxide, pellets, 3 mm
Sigma-Aldrich
Aluminum oxide, Corundum, α-phase, -100 mesh
Sigma-Aldrich
Aluminum oxide, powder, 99.99% trace metals basis
Sigma-Aldrich
Aluminum oxide, calcined, powder, primarily α-phase, 100-325 mesh
Sigma-Aldrich
Aluminum oxide, Type WN-6, Neutral, Activity Grade Super I
Sigma-Aldrich
Aluminum oxide, powder, primarily α phase, ≤10 μm avg. part. size, 99.5% trace metals basis
Sigma-Aldrich
Aluminum oxide, pore size 58 Å, ~150 mesh
Sodium laurilsulfate, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Aluminum oxide, activated, basic, Brockmann I
Sigma-Aldrich
Aluminum oxide, activated, acidic, Brockmann I
Sigma-Aldrich
Aluminum oxide, activated, neutral, Brockmann I
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90%