Merck
  • Home
  • Search Results
  • Increased susceptibility of H-Ras(G12V)-transformed human urothelial cells to the genotoxic effects of sodium arsenite.

Increased susceptibility of H-Ras(G12V)-transformed human urothelial cells to the genotoxic effects of sodium arsenite.

Archives of toxicology (2014-09-10)
Yi-Chun Liao, Yi-Fan Chen, Te-Chang Lee
ABSTRACT

Inorganic arsenite (iAs) is a human carcinogen. Numerous studies have shown that mutation-activated H-Ras is frequently observed in human urothelial carcinomas. The interaction between iAs, an environmental factor, and H-Ras, an oncogene, is not clear. In this study, we explored the genotoxic effects of iAs in human urothelial cells ectopically expressing H-Ras (G12V) an activated H-Ras oncogene. Our results showed that H-Ras(G12V)-transformed human urothelial cells (HUC-RAS) were more susceptible to arsenite-induced cell death, DNA damage, micronuclei formation and anchorage-independent growth than control cells (HUC-neo). Furthermore, iAs treatment induced higher intracellular levels of reactive oxygen species (ROS) in the HUC-RAS cells than in the HUC-neo cells. N-acetyl-L-cysteine could suppress the iAs-induced increases in ROS and genetic damage. We further demonstrated that the intracellular glutathione levels were significantly elevated by the iAs treatment of the HUC-neo cells, but that this effect was not observed in the HUC-RAS cells. The iAs treatment induced higher superoxide dismutase activity in the HUC-neo cells than in the HUC-RAS cells. Alternatively, catalase activity was higher in the HUC-RAS cells than in the HUC-neo cells, but this enzyme was significantly suppressed by iAs. Moreover, iAs activated the ERK and JNK signaling pathways, which are involved in iAs-induced ROS production and genetic damage. Taken together, our present results suggest that elevated catalase activity in H-Ras(G12V)-transformed cells is significantly suppressed by iAs via activation of ERK and JNK signaling pathways and hence attenuate the defense of the neoplastic transformed cells against iAs-induced oxidative injuries.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.6%, ReagentPlus®
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
N-Acetyl-L-cysteine, Sigma Grade, ≥99% (TLC), powder
Sigma-Aldrich
5-(N,N-Dimethyl)amiloride hydrochloride
Sigma-Aldrich
N-Acetyl-L-cysteine, BioXtra, ≥99% (TLC)
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
N-Acetyl-L-cysteine, BioReagent, suitable for cell culture
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Amyloid Protein Non-Aβ Component, ≥80% (HPLC)