Pular para o conteúdo
Merck

Cryopreserved ECP-treated lymphocytes maintain apoptotic response and anti-proliferative effect.

Journal of clinical apheresis (2014-09-13)
Katherine Radwanski, Cheryl Heber, Kyungyoon Min
RESUMO

The ability to cryopreserve a portion of the cells treated during extracorporeal photopheresis (ECP) would improve therapy logistics, particularly for pediatric patients, by allowing multiple therapeutic doses to be collected from a single apheresis session. However, the effect of cryopreservation on ECP-treated cells is unknown (e.g., ECP-induced lymphocyte apoptosis and inhibition of proliferation). Mononuclear cell (MNC) apheresis products collected from healthy subjects were ECP-treated using offline methods. Fresh samples of ECP-treated and control cells were placed immediately in culture. The remainder of the cells were frozen in cryovials (n = 8) or cryobags (n = 8) at -80°C. After 1 week of -80°C storage, ECP-treated and control cells were thawed rapidly and samples were placed in culture. Lymphocyte apoptosis was assessed by phosphatidylserine exposure using Annexin V/7-AAD labeling. Lymphocyte proliferation after 3 days culture was measured using the carboxyfluorescein succinimidyl ester labeling technique. On Day 0, apoptosis levels were <5% in fresh ECP-treated and control cells and approximately 20% on thawing of cryopreserved ECP-treated and control cells. Apoptosis levels were comparable between the two cryopreserved groups immediately on thawing, indicating that ECP-treated cells were no more sensitive to the cryopreservation process than control cells. During 72-h culture, apoptosis levels increased to >80% in fresh and cryopreserved ECP-treated cells but remained near constant in both control groups. Inhibition of lymphocyte proliferation was >95% in all ECP-treated cells with no significant difference between fresh and cryopreserved cells (P = 0.12). Cryopreservation did not impair the apoptotic response or anti-proliferative effect of ECP-treated lymphocytes, thereby demonstrating early feasibility of this approach.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Dimetilsulfóxido, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimetilsulfóxido, for molecular biology
Sigma-Aldrich
Dimetilsulfóxido, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimetilsulfóxido, anhydrous, ≥99.9%
Sigma-Aldrich
Dimetilsulfóxido, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimetilsulfóxido, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Vinyl acetate, contains 3-20 ppm hydroquinone as inhibitor, ≥99%
Sigma-Aldrich
Dimetilsulfóxido, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, BioReagent, suitable for fluorescence, mixture of 2 components, ≥90% (HPLC)
Sigma-Aldrich
Dimetilsulfóxido, PCR Reagent
Sigma-Aldrich
5(6)-Carboxyfluorescein diacetate N-succinimidyl ester, BioReagent, suitable for fluorescence, ≥90% (HPLC)
Sigma-Aldrich
Fluorescein isothiocyanate isomer I, ≥97.5% (HPLC)
Sigma-Aldrich
6-Phosphonohexanoic acid, 97%
Sigma-Aldrich
5-Carboxy-fluorescein diacetate N-succinimidyl ester, for fluorescence, ≥95.0% (HPLC)
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)