Merck
  • Home
  • Search Results
  • Genome mining for natural product biosynthetic gene clusters in the Subsection V cyanobacteria.

Genome mining for natural product biosynthetic gene clusters in the Subsection V cyanobacteria.

BMC genomics (2015-09-04)
Melinda L Micallef, Paul M D'Agostino, Deepti Sharma, Rajesh Viswanathan, Michelle C Moffitt
ABSTRACT

Cyanobacteria are well known for the production of a range of secondary metabolites. Whilst recent genome sequencing projects has led to an increase in the number of publically available cyanobacterial genomes, the secondary metabolite potential of many of these organisms remains elusive. Our study focused on the 11 publically available Subsection V cyanobacterial genomes, together with the draft genomes of Westiella intricata UH strain HT-29-1 and Hapalosiphon welwitschii UH strain IC-52-3, for their genetic potential to produce secondary metabolites. The Subsection V cyanobacterial genomes analysed in this study are reported to produce a diverse range of natural products, including the hapalindole-family of compounds, microcystin, hapalosin, mycosporine-like amino acids and hydrocarbons. A putative gene cluster for the cyclic depsipeptide hapalosin, known to reverse P-glycoprotein multiple drug resistance, was identified within three Subsection V cyanobacterial genomes, including the producing cyanobacterium H. welwitschii UH strain IC-52-3. A number of orphan NRPS/PKS gene clusters and ribosomally-synthesised and post translationally-modified peptide gene clusters (including cyanobactin, microviridin and bacteriocin gene clusters) were identified. Furthermore, gene clusters encoding the biosynthesis of mycosporine-like amino acids, scytonemin, hydrocarbons and terpenes were also identified and compared. Genome mining has revealed the diversity, abundance and complex nature of the secondary metabolite potential of the Subsection V cyanobacteria. This bioinformatic study has identified novel biosynthetic enzymes which have not been associated with gene clusters of known classes of natural products, suggesting that these cyanobacteria potentially produce structurally novel secondary metabolites.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methyl acetoacetate, Arxada quality, ≥99% (GC)
Sigma-Aldrich
DL-Serine, ≥98% (TLC)
Sigma-Aldrich
DL-Serine, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥98% (HPLC)
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Methyl acetoacetate, ReagentPlus®, 99%
Sigma-Aldrich
DL-Phenylalanine, ReagentPlus®, 99%
Sigma-Aldrich
Squalene, ≥98%, liquid
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Glycine, 99%, FCC
Sigma-Aldrich
Glycine, ACS reagent, ≥98.5%
Sigma-Aldrich
Pyridinium chlorochromate, 98%
Sigma-Aldrich
Glycine, puriss. p.a., reag. Ph. Eur., buffer substance, 99.7-101% (calc. to the dried substance)
Sigma-Aldrich
Glycine, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O
Sigma-Aldrich
Glycine, meets analytical specification of Ph. Eur., BP, USP, 99-101% (based on anhydrous substance)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
SAFC
Glycine
Sigma-Aldrich
Glycine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Glycine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Sigma-Aldrich
Glycine, BioXtra, ≥99% (titration)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O