Merck
  • Home
  • Search Results
  • Low spinophilin expression enhances aggressive biological behavior of breast cancer.

Low spinophilin expression enhances aggressive biological behavior of breast cancer.

Oncotarget (2015-04-11)
Daniela Schwarzenbacher, Verena Stiegelbauer, Alexander Deutsch, Anna Lena Ress, Ariane Aigelsreiter, Silvia Schauer, Karin Wagner, Tanja Langsenlehner, Margit Resel, Armin Gerger, Hui Ling, Cristina Ivan, George Adrian Calin, Gerald Hoefler, Beate Rinner, Martin Pichler
ABSTRACT

Spinophilin, a putative tumor suppressor gene, has been shown to be involved in the pathogenesis of certain types of cancer, but its role has never been systematically explored in breast cancer. In this study, we determined for the first time the expression pattern of spinophilin in human breast cancer molecular subtypes (n = 489) and correlated it with survival (n = 921). We stably reduced spinophilin expression in breast cancer cells and measured effects on cellular growth, apoptosis, anchorage-independent growth, migration, invasion and self-renewal capacity in vitro and metastases formation in vivo. Microarray profiling was used to determine the most abundantly expressed genes in spinophilin-silenced breast cancer cells. Spinophilin expression was significantly lower in basal-like breast cancer (p<0.001) and an independent poor prognostic factor in breast cancer patients (hazard ratio = 1.93, 95% confidence interval: 1.24 -3.03; p = 0.004) A reduction of spinophilin levels increased cellular growth in breast cancer cells (p<0.05), without influencing activation of apoptosis. Anchorage-independent growth, migration and self-renewal capacity in vitro and metastatic potential in vivo were also significantly increased in spinophilin-silenced cells (p<0.05). Finally, we identified several differentially expressed genes in spinophilin-silenced cells. According to our data, low levels of spinophilin are associated with aggressive behavior of breast cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrocortisone, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Puromycin dihydrochloride from Streptomyces alboniger, ≥98% (HPLC), powder
Sigma-Aldrich
Puromycin dihydrochloride from Streptomyces alboniger, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrocortisone, meets USP testing specifications
Sigma-Aldrich
Hydrocortisone, BioReagent, suitable for cell culture
Sigma-Aldrich
Suplatast tosylate, ≥98% (HPLC)
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Hydrocortisone, ≥98% (HPLC)
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, ≥99.5% (titration)
SAFC
HEPES
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
SAFC
HEPES
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
DL-Serine, ≥98% (TLC)
Sigma-Aldrich
DL-Serine, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥98% (HPLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
SAFC
L-Glutamine
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture