Merck
All Photos(5)

Documents

702277

Sigma-Aldrich

Lithium titanate, spinel

greener alternative

nanopowder, <200 nm particle size (BET), >99%

Sign Into View Organizational & Contract Pricing

Select a Size

Synonym(s):
LTO nanopowder, Lithium titanate spinel oxide, Lithium titanium oxide
Linear Formula:
Li4Ti5O12
CAS Number:
Molecular Weight:
459.09
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Assay

>99%

form

nanopowder

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

surface area

32.6 m2/g , BET

particle size

<200 nm (BET)

application(s)

battery manufacturing

greener alternative category

SMILES string

[Li+].[Li+].[Li+].[Li+].[O-][Ti](=O)O[Ti](O[Ti]([O-])=O)(O[Ti]([O-])=O)O[Ti]([O-])=O

InChI

1S/4Li.12O.5Ti/q4*+1;;;;;;;;;4*-1;;;;;

InChI key

BNQVSKURWGZJMY-UHFFFAOYSA-N

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
444456451622400939
Lithium granular, 4-10&#160;mesh particle size, high sodium, 99% (metals basis)

Sigma-Aldrich

444456

Lithium

Lithium titanate &#8722;80&#160;mesh

Sigma-Aldrich

400939

Lithium titanate

form

nanopowder

form

granular

form

powder

form

powder

particle size

<200 nm (BET)

particle size

4-10 mesh

particle size

-

particle size

−80 mesh

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

surface area

32.6 m2/g , BET

surface area

-

surface area

-

surface area

-

application(s)

battery manufacturing

application(s)

-

application(s)

battery manufacturing

application(s)

-

General description

Lithium titanate, spinel is an electrode material that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Application

Lithium titanate, spinel nanopowder can be used as an anode material, which shows an ion conductivity of 10-13 Scm-1 at room temperature. It can also be used as an alternative to conventional graphite materials. It can further be used in the fabrication of high-performance lithium-ion batteries for electric vehicles (EVs).

Legal Information

Product of Engi-Mat Co.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Slide 1 of 6

1 of 6

Lithium zirconate &#8722;80&#160;mesh

Sigma-Aldrich

400920

Lithium zirconate

Lithium niobate 99.9% trace metals basis

Sigma-Aldrich

254290

Lithium niobate

Sodium metatitanate &#8722;200&#160;mesh

Sigma-Aldrich

401307

Sodium metatitanate

Lithium aluminate

Sigma-Aldrich

336637

Lithium aluminate

Template-free synthesis of mesoporous spinel lithium titanate microspheres and their application in high-rate lithium ion batteries
Tang Y, et al.
Journal of Materials Chemistry, 19(33), 5980-5984 (2009)
Mesoporous spinel Li4Ti5O12 nanoparticles for high rate lithium-ion battery anodes
Liu W, et al.
Electrochimica Acta, 133, 578-582 (2014)
Sungmook Jung et al.
Scientific reports, 5, 17081-17081 (2015-11-26)
Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the
Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode
Snyder MQ, et al.
Journal of Power Sources, 165(1), 379-385 (2007)
Seongjun Bae et al.
ACS applied materials & interfaces, 7(30), 16565-16572 (2015-07-15)
Despite the many efforts to solve the problem associated with lithium storage at high rates, it is rarely achieved up until now. The design with experimental proof is reported here for the high rate of lithium storage via a core-shell

Articles

Nanomaterials for Energy Storage in Lithium-ion Battery Applications

Nanomaterials for Energy Storage in Lithium-ion Battery Applications

U.S. Department of Energy’s Materials Research for Advanced Lithium Ion Batteries

Increasing fuel costs and concerns about greenhouse gas emissions have spurred the growth in sales of hybrid electric vehicles (HEVs) that carry a battery pack to supplement the performance of the internal combustion engine (ICE).

U.S. Department of Energy’s Materials Research for Advanced Lithium Ion Batteries

Increasing fuel costs and concerns about greenhouse gas emissions have spurred the growth in sales of hybrid electric vehicles (HEVs) that carry a battery pack to supplement the performance of the internal combustion engine (ICE).

U.S. Department of Energy’s Materials Research for Advanced Lithium Ion Batteries

Increasing fuel costs and concerns about greenhouse gas emissions have spurred the growth in sales of hybrid electric vehicles (HEVs) that carry a battery pack to supplement the performance of the internal combustion engine (ICE).

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service