• Home
  • Search Results
  • The Protective Effect of Chlorogenic Acid on Vascular Senescence via the Nrf2/HO-1 Pathway.

The Protective Effect of Chlorogenic Acid on Vascular Senescence via the Nrf2/HO-1 Pathway.

International journal of molecular sciences (2020-07-08)
Yoshiko Hada, Haruhito A Uchida, Nozomu Otaka, Yasuhiro Onishi, Shugo Okamoto, Mariko Nishiwaki, Rika Takemoto, Hidemi Takeuchi, Jun Wada

The world faces the serious problem of aging. In this study, we aimed to investigate the effect of chlorogenic acid (CGA) on vascular senescence. C57/BL6 female mice that were 14 ± 3 months old were infused with either Angiotensin II (AngII) or saline subcutaneously for two weeks. These mice were administered CGA of 20 or 40 mg/kg/day, or saline via oral gavage. AngII infusion developed vascular senescence, which was confirmed by senescence associated-β-galactosidase (SA-β-gal) staining. CGA administration attenuated vascular senescence in a dose-dependent manner, in association with the increase of Sirtuin 1 (Sirt1) and endothelial nitric oxide synthase (eNOS), and with the decrease of p-Akt, PAI-1, p53, and p21. In an in vitro study, with or without pre-treatment of CGA, Human Umbilical Vein Endothelial Cells (HUVECs) were stimulated with H2O2 for an hour, then cultured in the absence or presence of 0.5-5.0 μM CGA for the indicated time. Endothelial cell senescence was induced by H2O2, which was attenuated by CGA treatment. Pre-treatment of CGA increased Nrf2 in HUVECs. After H2O2 treatment, translocation of Nrf2 into the nucleus and the subsequent increase of Heme Oxygenase-1 (HO-1) were observed earlier in CGA-treated cells. Furthermore, the HO-1 inhibitor canceled the beneficial effect of CGA on vascular senescence in mice. In conclusion, CGA exerts a beneficial effect on vascular senescence, which is at least partly dependent on the Nuclear factor erythroid 2-factor 2 (Nrf2)/HO-1 pathway.

Product Number
Product Description

Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Chlorogenic acid, ≥95% (titration)