• Home
  • Search Results
  • hipBA toxin-antitoxin systems mediate persistence in Caulobacter crescentus.

hipBA toxin-antitoxin systems mediate persistence in Caulobacter crescentus.

Scientific reports (2020-02-20)
Charlie Y Huang, Carlos Gonzalez-Lopez, Céline Henry, Ivan Mijakovic, Kathleen R Ryan

Antibiotic persistence is a transient phenotypic state during which a bacterium can withstand otherwise lethal antibiotic exposure or environmental stresses. In Escherichia coli, persistence is promoted by the HipBA toxin-antitoxin system. The HipA toxin functions as a serine/threonine kinase that inhibits cell growth, while the HipB antitoxin neutralizes the toxin. E. coli HipA inactivates the glutamyl-tRNA synthetase GltX, which inhibits translation and triggers the highly conserved stringent response. Although hipBA operons are widespread in bacterial genomes, it is unknown if this mechanism is conserved in other species. Here we describe the functions of three hipBA modules in the alpha-proteobacterium Caulobacter crescentus. The HipA toxins have different effects on growth and macromolecular syntheses, and they phosphorylate distinct substrates. HipA1 and HipA2 contribute to antibiotic persistence during stationary phase by phosphorylating the aminoacyl-tRNA synthetases GltX and TrpS. The stringent response regulator SpoT is required for HipA-mediated antibiotic persistence, but persister cells can form in the absence of all hipBA operons or spoT, indicating that multiple pathways lead to persister cell formation in C. crescentus.

Product Number
Product Description

Monoclonal ANTI-FLAG® M2 antibody produced in mouse, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Protease Inhibitor Cocktail powder, for use with bacterial cell extracts, lyophilized powder
Phosphatase Inhibitor Cocktail 2, aqueous solution (dark coloration may develop upon storage, which does not affect the activity)
PHOS-Select Iron Affinity Gel