• Home
  • Search Results
  • Effects of curcumin on apoptosis and oxidoinflammatory regulation in a rat model of acetic acid-induced colitis: the roles of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase.

Effects of curcumin on apoptosis and oxidoinflammatory regulation in a rat model of acetic acid-induced colitis: the roles of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase.

Journal of medicinal food (2013-04-10)
Yeter Topcu-Tarladacalisir, Meryem Akpolat, Yesim Hulya Uz, Gulnur Kizilay, Melike Sapmaz-Metin, Aysegul Cerkezkayabekir, Imran Kurt Omurlu
ABSTRACT

The present study evaluated the effects of curcumin on epithelial cell apoptosis, the immunoreactivity of the phospho-c-Jun N-terminal kinase (JNK) and phospho-p38 mitogen-activated protein kinases (MAPKs) in inflamed colon mucosa, and oxidative stress in a rat model of ulcerative colitis induced by acetic acid. Rats were randomly divided into three groups: control, acetic acid, and acetic acid+curcumin. Curcumin (100 mg/kg per day, intragastrically) was administered 10 days before the induction of colitis and was continued for two additional days. Acetic acid-induced colitis caused a significant increase in the macroscopic and microscopic tissue ranking scores as well as an elevation in colonic myeloperoxidase (MPO) activity, malondialdehyde (MDA) levels, and the number of apoptotic epithelial cells in colon tissue compared to controls. In the rat colon, immunoreactivity of phospho-p38 MAPK was increased, whereas the phospho-JNK activity was decreased following the induction of colitis. Curcumin treatment was associated with amelioration of macroscopic and microscopic colitis sores, decreased MPO activity, and decreased MDA levels in acetic acid-induced colitis. Furthermore, oral curcumin supplementation clearly prevented programmed cell death and restored immunreactivity of MAPKs in the colons of colitic rats. The results of this study suggest that oral curcumin treatment decreases colon injury and is associated with decreased inflammatory reactions, lipid peroxidation, apoptotic cell death, and modulating p38- and JNK-MAPK pathways.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Curcumin, from Curcuma longa (Turmeric), powder
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Curcumin, ≥94% (curcuminoid content), ≥80% (Curcumin)
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Supelco
Acetic acid, analytical standard
Sigma-Aldrich
Acetic acid, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Supelco
Curcumin, analytical standard
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Acetic acid, glacial, puriss., 99-100%
Curcumin, primary reference standard
Millipore
Bifido Selective Supplement B, suitable for microbiology