• Home
  • Search Results
  • Variations in wood burning organic marker concentrations in the atmospheres of four European cities.

Variations in wood burning organic marker concentrations in the atmospheres of four European cities.

Journal of environmental monitoring : JEM (2012-07-06)
Alexandre Caseiro, César Oliveira
ABSTRACT

The particulate emissions from biomass burning are a growing concern due to the recent evidence of their ubiquitous and important contribution to the ambient aerosol load. A possible strategy to apportion the biomass burning share of particulate matter is the use of organic molecular tracers. Anhydrosugars (levoglucosan, mannosan and galactosan), together with two organic acids (dehydroabietic and pimaric acids), were previously reported as organic markers for particulate wood burning emissions. These five compounds were studied in four European cities (Helsinki, Copenhagen, Birmingham and Oporto), at both a Roadside and an Urban Background station, during a summer and a winter campaign in the fine (PM(2.5)) and the coarse (PM(10-2.5)) size-fractions of the ambient aerosol. Levoglucosan concentrations were highest in the city of Oporto. In winter, levoglucosan was more present in the fine fraction but in summer, concentrations were similar in both size fractions. Levoglucosan concentrations in the fine size fraction were higher in winter, but no seasonal differences were observed for the coarse size fraction. The lack of difference between the Roadside and Urban Background levoglucosan concentrations points towards a regional nature of this type of pollution. Wood burning was estimated to contribute to about 3.1% of the winter PM(10) mass in Oporto, and to 3.7% in Copenhagen. Mannosan followed the trends exhibited by levoglucosan. The ratio between the levoglucosan and mannosan concentrations allowed determination of a preference for softwood over hardwood in all four cities. Galactosan, pimaric acid and dehydroabietic acid were found to be minor compounds.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dehydroabietic acid, ≥95% (LC/MS-ELSD)