Merck
  • Home
  • Search Results
  • Vascular injury in diabetic db/db mice is ameliorated by atorvastatin: role of Rac1/2-sensitive Nox-dependent pathways.

Vascular injury in diabetic db/db mice is ameliorated by atorvastatin: role of Rac1/2-sensitive Nox-dependent pathways.

Clinical science (London, England : 1979) (2014-11-02)
Thiago Bruder-Nascimento, Glaucia E Callera, Augusto C Montezano, Ying He, Tayze T Antunes, Aurelie Nguyen Dinh Cat, Rita C Tostes, Rhian M Touyz
ABSTRACT

Oxidative stress [increased bioavailability of reactive oxygen species (ROS)] plays a role in the endothelial dysfunction and vascular inflammation, which underlie vascular damage in diabetes. Statins are cholesterol-lowering drugs that are vasoprotective in diabetes through unknown mechanisms. We tested the hypothesis that atorvastatin decreases NADPH oxidase (Nox)-derived ROS generation and associated vascular injury in diabetes. Lepr(db)/Lepr(db) (db/db) mice, a model of Type 2 diabetes and control Lepr(db)/Lepr(+) (db/+) mice were administered atorvastatin (10 mg/kg per day, 2 weeks). Atorvastatin improved glucose tolerance in db/db mice. Systemic and vascular oxidative stress in db/db mice, characterized by increased plasma TBARS (thiobarbituric acid-reactive substances) levels and exaggerated vascular Nox-derived ROS generation respectively, were inhibited by atorvastatin. Cytosol-to-membrane translocation of the Nox regulatory subunit p47(phox) and the small GTPase Rac1/2 was increased in vessels from db/db mice compared with db/+ mice, an effect blunted by atorvastatin. The increase in vascular Nox1/2/4 expression and increased phosphorylation of redox-sensitive mitogen-activated protein kinases (MAPKs) was abrogated by atorvastatin in db/db mice. Pro-inflammatory signalling (decreased IκB-α and increased NF-κB p50 expression, increased NF-κB p65 phosphorylation) and associated vascular inflammation [vascular cell adhesion molecule-1 (VCAM-1) expression and vascular monocyte adhesion], which were increased in aortas of db/db mice, were blunted by atorvastatin. Impaired acetylcholine (Ach)- and insulin (INS)-induced vasorelaxation in db/db mice was normalized by atorvastatin. Our results demonstrate that, in diabetic mice, atorvastatin decreases vascular oxidative stress and inflammation and ameliorates vascular injury through processes involving decreased activation of Rac1/2 and Nox. These findings elucidate redox-sensitive and Rac1/2-dependent mechanisms whereby statins protect against vascular injury in diabetes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetylcholine bromide, ≥99%
Sigma-Aldrich
Acetylcholine iodide, ≥97%
Sigma-Aldrich
Acetylcholine chloride, ≥99% (TLC)
Sigma-Aldrich
Acetylcholine chloride, suitable for cell culture
Sigma-Aldrich
Acetylcholine perchlorate
Sigma-Aldrich
Acetylcholine chloride, pkg of 150 mg (per vial)
USP
Acetylcholine chloride, United States Pharmacopeia (USP) Reference Standard
Acetylcholine chloride, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Acetylcholine chloride, ≥99% (TLC), free-flowing, Redi-Dri