Merck
  • Home
  • Search Results
  • Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury.

Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury.

American journal of physiology. Lung cellular and molecular physiology (2014-10-19)
Feng Wu, William S Szczepaniak, Sruti Shiva, Huanbo Liu, Yinna Wang, Ling Wang, Ying Wang, Eric E Kelley, Alex F Chen, Mark T Gladwin, Bryan J McVerry
ABSTRACT

Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. C57BL/6J mice were challenged with intratracheal LPS. Bronchoalveolar lavage fluid was analyzed for protein accumulation, and lung tissue homogenate was assayed for endothelial NOS content and function. Human lung microvascular endothelial cell (HLMVEC) monolayers were exposed to LPS in vitro, and barrier integrity and superoxide production were measured. Biopterin species were quantified, and coimmunoprecipitation (Co-IP) assays were performed to identify protein interactions with eNOS that putatively drive uncoupling. Mice exposed to LPS demonstrated eNOS-dependent increased alveolar permeability without evidence for altered canonical NO signaling. LPS-induced superoxide production and permeability in HLMVEC were inhibited by the NOS inhibitor nitro-l-arginine methyl ester, eNOS-targeted siRNA, the eNOS cofactor tetrahydrobiopterin, and superoxide dismutase. Co-IP indicated that LPS stimulated the association of eNOS with NADPH oxidase 2 (Nox2), which correlated with augmented eNOS S-glutathionylation both in vitro and in vivo. In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature.

MATERIALS
Product Number
Brand
Product Description

USP
Glycerin, United States Pharmacopeia (USP) Reference Standard
Supelco
Glutathione, Pharmaceutical Secondary Standard; Certified Reference Material
Glutathione, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Glycerol solution, puriss. p.a., 86-89% (T)
Sigma-Aldrich
Glycerol solution, puriss., meets analytical specification of Ph. Eur., BP, 84-88%
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥98.5% (GC)
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Supelco
Sodium chloride, certified reference material for titrimetry, certified by BAM, ≥99.5%
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥99.0% (T)
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Supelco
Glycerin, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Supelco
Chloromethane solution, 200 μg/mL in methanol, analytical standard
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Chloromethane solution, 1.0 M in tert-butyl methyl ether, anhydrous
Sigma-Aldrich
Chloromethane solution, 1.0 M in diethyl ether
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
7,8-Dihydro-L-biopterin, ≥94% (HPLC)
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture