• Home
  • Search Results
  • Pharmacokinetic and pharmacodynamic analysis of inosine monophosphate dehydrogenase activity in hematopoietic cell transplantation recipients treated with mycophenolate mofetil.

Pharmacokinetic and pharmacodynamic analysis of inosine monophosphate dehydrogenase activity in hematopoietic cell transplantation recipients treated with mycophenolate mofetil.

Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation (2014-04-15)
Hong Li, Donald E Mager, Brenda M Sandmaier, Barry E Storer, Michael J Boeckh, Meagan J Bemer, Brian R Phillips, Linda J Risler, Jeannine S McCune
ABSTRACT

A novel approach to personalizing postgrafting immunosuppression in hematopoietic cell transplantation (HCT) recipients is evaluating inosine monophosphate dehydrogenase (IMPDH) activity as a drug-specific biomarker of mycophenolic acid (MPA)-induced immunosuppression. This prospective study evaluated total MPA, unbound MPA, and total MPA glucuronide plasma concentrations and IMPDH activity in peripheral blood mononuclear cells (PMNCs) at 5 time points after the morning dose of oral mycophenolate mofetil (MMF) on day +21 in 56 nonmyeloablative HCT recipients. Substantial interpatient variability in pharmacokinetics and pharmacodynamics was observed and accurately characterized by the population pharmacokinetic-dynamic model. IMPDH activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration in most patients. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory maximum effect model with an IC50 of 3.23 mg/L total MPA and 57.3 ng/mL unbound MPA. The day +21 IMPDH area under the effect curve (AUEC) was associated with cytomegalovirus reactivation, nonrelapse mortality, and overall mortality. In conclusion, a pharmacokinetic-dynamic model was developed that relates plasma MPA concentrations with PMNC IMPDH activity after an MMF dose in HCT recipients. Future studies should validate this model and confirm that day +21 IMPDH AUEC is a predictive biomarker.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Ammonium hydroxide solution, ACS reagent, 28.0-30.0% NH3 basis
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Potassium chloride, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Supelco
Ammonium acetate, suitable for mass spectrometry (MS), LiChropur, eluent additive for LC-MS
Sigma-Aldrich
Sodium phosphate monobasic, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Potassium chloride, for molecular biology, ≥99.0%
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Ammonium hydroxide solution, 28% NH3 in H2O, ≥99.99% trace metals basis
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Ammonium acetate, for molecular biology, ≥98%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Potassium chloride, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Supelco
Potassium chloride solution, for Ag/AgCl electrodes, ~3 M KCl, saturated with silver chloride
Sigma-Aldrich
Ammonium acetate, reagent grade, ≥98%