• Home
  • Search Results
  • Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy.

Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy.

Food chemistry (2015-01-28)
Yaxi Hu, Shaolong Feng, Fang Gao, Eunice C Y Li-Chan, Edward Grant, Xiaonan Lu
ABSTRACT

A novel biosensor combining molecularly imprinted polymers and surface-enhanced Raman spectroscopy (MIPs-SERS) determines melamine in whole milk. MIPs were synthesized by bulk polymerization of melamine (template), methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linking agent) and 2,2'-azobisisobutyronitrile (initiator). Static and kinetic adsorption tests validated the use of MIPs to efficiently separate and enrich melamine from whole milk. Silver dendrite nanostructure served as SERS-active substrate for signal collection. Principal component analysis and hierarchical cluster analysis segregated Raman signatures of whole milk samples with different melamine concentrations. Regression models showed a good linear relationship (R(2)=0.93) between the height of melamine SERS band (at 703cm(-1)) and melamine concentration in the range from 0.005mmolL(-1) to 0.05mmolL(-1). The limit of detection and limit of quantification were 0.012mmolL(-1) and 0.039mmolL(-1), confirming the high sensitivity of this biosensor to accurately determine melamine in whole milk. Simple sample pretreatment reduced full analysis time to determine melamine in whole milk to less than 20min.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Ethanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Ethanol, for residue analysis
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Ethanol, purum, secunda spirit, denaturated with 2% 2-butanone and 0.5% 4-methyl-2-pentanone, S15, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Sigma-Aldrich
Ammonium hydroxide solution, ACS reagent, 28.0-30.0% NH3 basis
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
2,2′-Azobis(2-methylpropionitrile), 98%
Sigma-Aldrich
Acetonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Ammonium hydroxide solution, 28% NH3 in H2O, ≥99.99% trace metals basis
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Melamine, 99%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methacrylic acid, contains 250 ppm MEHQ as inhibitor, 99%
Sigma-Aldrich
Ethylene glycol dimethacrylate, 98%, contains 90-110 ppm monomethyl ether hydroquinone as inhibitor
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard