Merck
  • Home
  • Search Results
  • Des-aspartate angiotensin I (DAA-I) reduces endothelial dysfunction in the aorta of the spontaneously hypertensive rat through inhibition of angiotensin II-induced oxidative stress.

Des-aspartate angiotensin I (DAA-I) reduces endothelial dysfunction in the aorta of the spontaneously hypertensive rat through inhibition of angiotensin II-induced oxidative stress.

Vascular pharmacology (2015-04-15)
Wei Mee Loh, Wei Chih Ling, Dharmani D Murugan, Yeh Siang Lau, Francis I Achike, Paul M Vanhoutte, Mohd Rais Mustafa
ABSTRACT

Des-aspartate angiotensin I (DAA-I), an endogenous nonapeptide, counteracts several effects of angiotensin II on vascular tone. The aim of this study was to investigate the acute protective effect of DAA-I on endothelial function in the spontaneously hypertensive rat (SHR) as well as its effect on angiotensin II-induced contractions and oxidative stress. Aortic rings were incubated with DAA-I (0.1μM) for 30min prior to the assessment of angiotensin II-induced contractions (0.1nM-10μM) in WKY and SHR aortas. Total nitrate and nitrite levels were assessed using a colorimetric method and reactive oxygen species (ROS) were measured by dihydroethidium (DHE) fluorescence and lucigenin-enhanced chemiluminescence. The effect of DAA-I was also assessed against endothelium-dependent and -independent relaxations to acetylcholine and sodium nitroprusside, respectively. Angiotensin II-induced contractions were significantly reduced by DAA-I, losartan and tempol. Incubation with ODQ (soluble guanylyl cyclase inhibitor) and removal of the endothelium prevented the reduction of angiotensin II-induced contractions by DAA-I. Total nitrate and nitrite levels were increased in DAA-I, losartan and tempol treated-SHR tissues while ROS level was reduced by DAA-I and the latter inhibitors. In addition, DAA-I significantly improved the impaired acetylcholine-induced relaxation in SHR aortas whilst sodium nitroprusside-induced endothelium-independent relaxation remained unaffected. The present findings indicate that improvement of endothelial function by DAA-I in the SHR aorta is mediated through endothelium-dependent release of nitric oxide and inhibition of angiotensin II-induced oxidative stress.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Captopril, meets USP testing specifications
Sigma-Aldrich
Captopril, ≥98% (HPLC), powder
Sigma-Aldrich
Acetylcholine chloride, ≥99% (TLC)
Sigma-Aldrich
Acetylcholine chloride, suitable for cell culture
Sigma-Aldrich
DAA-I acetate salt, ≥98% (HPLC)
Sigma-Aldrich
Acetylcholine chloride, ≥99% (TLC), free-flowing, Redi-Dri
Sigma-Aldrich
Acetylcholine chloride, pkg of 150 mg (per vial)
Sigma-Aldrich
Dihydroethidium, ≥95%
Sigma-Aldrich
1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one, powder
Sigma-Aldrich
Diphenyleneiodonium chloride, ≥98%
Sigma-Aldrich
4′-Hydroxy-3′-methoxyacetophenone, 98%
Sigma-Aldrich
Acetovanillone, ≥98%, FG
Sigma-Aldrich
Dihydroethidium, BioReagent, suitable for fluorescence, ≥95% (HPCE)