• Home
  • Search Results
  • Preconcentration of indapamide from human urine using molecularly imprinted solid-phase extraction.

Preconcentration of indapamide from human urine using molecularly imprinted solid-phase extraction.

Journal of separation science (2015-07-04)
Hüma Yılmaz, Hasan Basan
ABSTRACT

A simple, sensitive, and selective molecularly imprinted solid-phase extraction and spectrophotometric method has been developed for the clean-up and preconcentration of indapamide from human urine. Molecularly imprinted polymers were prepared by a non-covalent imprinting approach using indapamide as a template molecule, 2-(trifluoromethyl) acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, N,N-azobisisobutyronitrile as a thermal initiator and acetonitrile as a porogenic solvent. A non-imprinted polymer was also prepared in the same way, but in the absence of template. Molecularly imprinted polymer and non-imprinted polymer sorbents were dry-packed into solid-phase extraction cartridges. Eluates from cartridges were analyzed using a spectrophotometer for the determination of indapamide by referring to the calibration curve in the range 0.14-1.50 μg/mL. Preconcentration factor, limit of detection, and limit of quantification were 16.30, 0.025 μg/mL, and 0.075 μg/mL, respectively. A relatively high imprinting factor (9.3) was also achieved and recovery values for the indapamide spiked into human urine were in the range of 80.1-81.2%. In addition, relatively low within-day (0.17-0.42%) and between-day (1.1-1.4%) precision values were obtained as well. The proposed molecularly imprinted solid-phase extraction and spectrophotometric method was successfully applied to selective extraction, preconcentration, and determination of indapamide from human urine samples.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
2,2′-Azobis(2-methylpropionitrile), 98%
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
L-Lysine monohydrochloride, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
Telmisartan, ≥98% (HPLC), solid
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
2-(Trifluoromethyl)acrylic acid, 98%
Supelco
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Acetonitrile
SAFC
Acetic acid, glacial
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Ultrapure Acetonitrile, for DNA synthesis
Sigma-Aldrich
Acetonitrile, for DNA synthesis
Sigma-Aldrich
Acetonitrile, configured for PerkinElmer 8900, configured for Polygen, for DNA synthesis
Sigma-Aldrich
Acetonitrile, for DNA synthesis
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Ultrapure Acetonitrile