All Photos(1)

447943

Sigma-Aldrich

Poly(ethylene glycol) methyl ether methacrylate

average Mn 500, contains 200 ppm BHT as inhibitor, 100 ppm MEHQ as inhibitor

Synonym(s):
Methoxy poly(ethylene glycol) monomethacrylate, Methoxy PEG methacrylate, Poly(ethylene glycol) monomethyl ether monomethacrylate
Linear Formula:
H2C=CCH3CO2(CH2CH2O)nCH3
CAS Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

mol wt

average Mn 500

Quality Level

contains

100 ppm MEHQ as inhibitor
200 ppm BHT as inhibitor

reaction suitability

reagent type: chemical modification reagent
reaction type: Polymerization Reactions

refractive index

n20/D 1.496

mp

−1-2 °C

density

1.08 g/mL at 25 °C

Ω-end

methacrylate

α-end

methoxy

polymer architecture

shape: linear
functionality: monofunctional

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

Poly(ethylene glycol) methyl ether methacrylate (PEGMA) is a nonlinear analog of polyethylene glycol (PEG). It is a biocompatible homopolymer with a brush type structure that is mainly used to provide a PEG modified surface.

Application

PEGMA can be used in the surface modification of poly(ether sulfone) based ultrafiltration (UF) membrane as a foul-resistant material.

Packaging

100, 500 mL in poly bottle

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

10 - Combustible liquids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves

Certificate of Analysis

Certificate of Origin

Fouling-resistant properties of a surface-modified poly (ether sulfone) ultrafiltration membrane grafted with poly (ethylene glycol)-amide binary monomers
Yune PS, et al.
Journal of Membrane Science , 377(1-2), 159-166 (2011)
Using co-solvents and high throughput to maximize protein resistance for poly (ethylene glycol)-grafted poly (ether sulfone) UF membranes
Yune PS, et al.
Journal of Membrane Science , 370(1-2), 166-174 (2011)
Self-assembly of brush-like poly [poly (ethylene glycol) methyl ether methacrylate] synthesized via aqueous atom transfer radical polymerization
Hussain H, et al.
Langmuir, 24(23), 13279-13286 (2008)
I-Chia Peng et al.
Biomaterials, 76, 76-86 (2015-11-01)
Stem cell culture is typically based on batch-type culture, which is laborious and expensive. Here, we propose a continuous harvest method for stem cells cultured on thermoresponsive nanobrush surfaces. In this method, stem cells are partially detached from the nanobrush...
Surface-initiated photopolymerization of poly (ethylene glycol) methyl ether methacrylate on a diethyldithiocarbamate-mediated polymer substrate
Luo Ning, et al.
Macromolecules, 35(7), 2487-2493 (2002)

Articles

Versatile Cell Culture Scaffolds via Bio-orthogonal Click Reactions

Devising biomaterial scaffolds that are capable of recapitulating critical aspects of the complex extracellular nature of living tissues in a threedimensional (3D) fashion is a challenging requirement in the field of tissue engineering and regenerative medicine.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service