All Photos(2)





CAS Number:
MDL number:

mol wt

Mw 54,000 (typical)




chlorinated solvents: soluble (partially soluble in THF, diethylether)


λex 440 nm; λem 567 nm in chloroform


2.3 (typical)

Looking for similar products? Visit Product Comparison Guide

General description

Poly(3-butylthiophene-2,5-diyl) (P3BT) is an alkylthiophene based conducting polymer that can be used as a donor molecule in the development of organic electronics. It is a π-conjugating polymer with a π-π stacking distance of 0.395 nm.
Conducting polymer, 80-90% head-to-tail regiospecific conformation.


P3BT can act as a hole transporting layer (HTL) which can potentially be used in the fabrication of organic field effect transistors (OFETs), chemical sensors, rechargeable batteries and polymeric solar cells (PSCs).
Rechargeable battery electrodes, electrochromic devices, chemical and optical sensors, light-emitting diodes, microelectrical amplifiers, field-effect transistors and non-linear optical materials.


1 g in glass bottle
Packaged in glass bottles


For solid state properties see J. Am. Chem. Soc. .

Legal Information

Product of Rieke Metals, Inc.
Rieke is a registered trademark of Rieke Metals, Inc.

Storage Class Code

13 - Non Combustible Solids



Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves

Certificate of Analysis

Certificate of Origin

Effect of alkyl side-chain length and solvent on the luminescent characteristics of poly (3-n-alkylthiophene)
Shin C and Lee H
Synthetic Metals, 140(2-3), 177-181 (2004)
High molecular weights, polydispersities, and annealing temperatures in the optimization of bulk-heterojunction photovoltaic cells based on poly (3-hexylthiophene) or poly (3-butylthiophene)
Hiorns RC, et al.
Advances in Functional Materials, 16(17), 2263-2273 (2006)
Nanofiber preparation by whisker method using solvent-soluble conducting polymers
Samitsu S, et al.
Thin Solid Films, 516(9), 2478-2486 (2008)
All-organic thin-film transistors patterned by means of selective electropolymerization
Becker E, et al.
Applied Physics Letters, 83(19), 4044-4046 (2003)
Journal of the American Chemical Society, 117, 233-233 (1994)


Conducting Polymer Device Applications

The application of conducting polymers at the interface with biology is an exciting new trend in organic electronics research.

Novel Graphene‑Based Nanostructures Production, Functionalization, and Engineering

Novel Graphene‑Based Nanostructures Production, Functionalization, and Engineering

Polymer Semiconductors for Intrinsically Stretchable Organic Transistors

Intrinsically stretchable active layers for organic field-effect transistors (OFET) are discussed. Polymer structural modification & post-polymerization modifications are 2 methods to achieve this.

Nanoparticle-based Zinc Oxide Electron Transport Layers for Printed Organic Photodetectors

Recent progress in the area of solution-processed functional materials has led to the development of a variety of thin-film optoelectronic devices with significant promise in the industrial and consumer electronics fields.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service