Skip to Content
Merck
  • Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson's disease.

Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson's disease.

Neuroscience letters (2002-12-25)
Takashi Abe, Chiaki Isobe, Takahiko Murata, Chigumi Sato, Hideo Tohgi
ABSTRACT

In order to investigate the possible role of oxidative RNA damage in the pathogenesis of Parkinson's disease (PD), the concentrations of the oxidative stress marker 8-hydroxyguanosine (8-OHG) were measured in the cerebrospinal fluid (CSF) and the serum of patients with PD and control subjects. The concentration of 8-OHG in CSF in PD patients was approximately three-fold that in controls (P < 0.001). The concentration of 8-OHG in CSF decreased significantly with the duration of disease (r(s) = -0.46, P < 0.05). However, the concentration of 8-OHG in serum was not significantly altered in PD patients compared to that in controls. In addition, the concentration of 8-OHG in CSF showed no correlation with that in serum in both the controls and PD patients suggesting that the 8-OHG concentrations in the CSF do not reflect those in serum and may be probably reflect those in brain tissue. These in vivo findings suggest a possible role of 8-OHG and increased oxidative RNA damage in the early stage of the development of PD.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tin, powder, -100 mesh, 99.99% trace metals basis
Sigma-Aldrich
Cobalt, Carbon coated magnetic, nanopowder, <50 nm particle size (TEM), ≥99%
Supelco
L-Cystine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Titanium, wire, diam. 1.0 mm, 99.99% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.127 mm, 99.7% trace metals basis
Sigma-Aldrich
Cobalt, granular, 99.99% trace metals basis
Sigma-Aldrich
Molybdenum, foil, thickness 1.0 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.025 mm, 99.98% trace metals basis
Sigma-Aldrich
Molybdenum, foil, thickness 0.025 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Molybdenum, foil, thickness 0.1 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Nickel, powder, <50 μm, 99.7% trace metals basis
Sigma-Aldrich
Magnesium, dendritic pieces, purified by distillation, 99.998% trace metals basis
Sigma-Aldrich
Nickel, rod, diam. 6.35 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Strontium, granular, 99% trace metals basis
Sigma-Aldrich
Magnesium, turnings, reagent grade, 98%
Sigma-Aldrich
Copper, powder, <75 μm, 99%
Sigma-Aldrich
Chromium, chips, thickness ~2 mm, 99.5%
Sigma-Aldrich
Manganese, chips, thickness <2.0 mm, 99%
Sigma-Aldrich
Nickel, foil, thickness 0.5 mm, 99.98% trace metals basis
Sigma-Aldrich
Copper, foil, thickness 0.5 mm, 99.98% trace metals basis
Sigma-Aldrich
Zinc preparation, 5 g/dL Zn2+ in THF, highly reactive Rieke®metal
Sigma-Aldrich
Copper, foil, thickness 0.025 mm, 99.98% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Sigma-Aldrich
Copper, wire, diam. 1.0 mm, ≥99.9%
Sigma-Aldrich
Copper, wire, diam. 0.25 mm, 99.999% trace metals basis
Sigma-Aldrich
Tin, powder, 10 μm, 99% trace metals basis
Sigma-Aldrich
Copper, wire, diam. 0.64 mm, 99.995% trace metals basis
Sigma-Aldrich
Copper, wire, diam. 2.0 mm, 99.999% trace metals basis
Sigma-Aldrich
Nickel, foil, thickness 0.1 mm, 99.98% trace metals basis
Sigma-Aldrich
Nickel, wire, diam. 0.5 mm, ≥99.9% trace metals basis