Merck
  • Home
  • Search Results
  • Serum metabolic profiling study of lung cancer using ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

Serum metabolic profiling study of lung cancer using ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (2014-05-27)
Yanjie Li, Xue Song, Xinjie Zhao, Lijuan Zou, Guowang Xu
ABSTRACT

Lung cancer is currently the leading cause of cancer-related mortality worldwide. It is, therefore, important to enhance understanding and add a new auxiliary detection tool of lung cancer. In this work, serum metabolic characteristics of lung cancer were investigated with a non-targeted metabolomics method. The metabolic profiling of 23 patients with lung cancer and 23 healthy controls were analyzed using ultra high performance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC/Q-TOF MS). Partial least squares discriminant analysis (PLS-DA) model of the metabolic data allowed the clear separation of the lung cancer patients from the healthy controls. In total, 27 differential metabolites were identified, which were mostly related to the perturbation of lipid metabolism, including choline, free fatty acids, lysophosphatidylcholines, etc. Choline and linoleic acid were defined as one combinational biomarker using binary logistic regression, which was supported by the validation with a smaller sample-set (9 patients and 9 healthy controls). These findings show that LC/MS-based serum metabolic profiling has potential application in complementary identification of lung cancer patients, and could be a powerful tool for cancer research.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ammonium bicarbonate, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
DL-Leucine, ≥99% (HPLC)
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile, for DNA synthesis
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Supelco
Methanol solution, suitable for HPLC, contains 10 % (v/v) water, 0.1 % (v/v) trifluoroacetic acid
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Supelco
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Ammonium bicarbonate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ultrapure Acetonitrile
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, NMR reference standard