Skip to Content
Merck
  • Thermal degradation of green tea flavan-3-ols and formation of hetero- and homocatechin dimers in model dairy beverages.

Thermal degradation of green tea flavan-3-ols and formation of hetero- and homocatechin dimers in model dairy beverages.

Food chemistry (2014-12-04)
Brian J Song, Chris Manganais, Mario G Ferruzzi
ABSTRACT

Interactions between polyphenols and macromolecules may impact polyphenol stability and bioavailability from foods. The impact of milk on tea flavan-3-ol stability to thermal treatment was investigated. Single strength (36.2 protein per L), quarter strength (9.0 g protein per L) milk, and control model beverages were incubated with epigallocatechin gallate and green tea extract at 62 or 37 °C for 180 min. Intact flavan-3-ols and select auto-oxidation products [theasinesins (THSNs) and P-2 dimers] were quantified by LC-MS. Generally, greater polyphenol to protein ratios increased first order degradation rates, consequently decreasing formation of oxidation products. The presence of galloyl and hydroxy moieties was associated with higher stability of monomeric flavan-3-ols with increasing protein concentrations suggesting potential for protein affinity to stabilise flavan-3-ols to thermal treatment. Absence of these moieties led to no observable improvements in stability. These results suggest that protein interactions may be useful in stabilising flavan-3-ols through thermal processing.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Citric acid, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodium phosphate dibasic, 99.95% trace metals basis
Supelco
(−)-Epigallocatechin gallate, analytical standard
USP
Ascorbic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Citric acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
Citric acid, BioUltra, anhydrous, ≥99.5% (T)
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Sodium phosphate dibasic, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Sodium phosphate dibasic, purum p.a., anhydrous, ≥98.0% (T)
Sigma-Aldrich
(−)-Epigallocatechin gallate, ≥80% (HPLC), from green tea
Sigma-Aldrich
(−)-Epigallocatechin gallate, ≥95%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Sodium phosphate dibasic, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Sodium phosphate dibasic, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium phosphate dibasic, Molecular Biology, ≥98.5% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium phosphate dibasic, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Citric acid, 99%
Sigma-Aldrich
Citric acid, anhydrous, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Citric acid, anhydrous, European Pharmacopoeia (EP) Reference Standard