Merck
  • Home
  • Search Results
  • A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

PloS one (2014-05-29)
Mikko T Nieminen, Lily Novak-Frazer, Vilma Rautemaa, Ranjith Rajendran, Timo Sorsa, Gordon Ramage, Paul Bowyer, Riina Rautemaa
ABSTRACT

The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 µM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm infections.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Cysteine, ≥97%, FG
Sigma-Aldrich
L-Cysteine, 97%
SAFC
L-Cysteine
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
SAFC
L-Glutamine
Sigma-Aldrich
L-Cysteine, BioUltra, ≥98.5% (RT)
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Dextrose, meets EP, BP, JP, USP testing specifications, anhydrous
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Cysteine, from non-animal source, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
L-Glutamine
Supelco
L-Cysteine, certified reference material, TraceCERT®
Supelco
L-Glutamine, certified reference material, TraceCERT®
Supelco
Dextrose, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Dextrose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
L-Cysteine, produced by Wacker Chemie AG, Burghausen, Germany, ≥98.0%
Sigma-Aldrich
MOPS, ≥99.5% (titration)
Sigma-Aldrich
MOPS, BioXtra, ≥99.5% (titration)
Sigma-Aldrich
MOPS, BioPerformance Certified, suitable for cell culture, ≥99.5% (titration)
Sigma-Aldrich
L-Leucine, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Leucine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
MOPS, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
L-Leucine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ACS reagent