Skip to Content
Merck
  • Combination of direct infusion mass spectrometry and gas chromatography mass spectrometry for toxicometabolomic study of red blood cells and serum of mice Mus musculus after mercury exposure.

Combination of direct infusion mass spectrometry and gas chromatography mass spectrometry for toxicometabolomic study of red blood cells and serum of mice Mus musculus after mercury exposure.

Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (2015-02-11)
M A García-Sevillano, T García-Barrera, F Navarro, N Abril, C Pueyo, J López-Barea, J L Gómez-Ariza
ABSTRACT

Although mercury (Hg) is an important environmental and occupational pollutant, its toxicological effects, especially in serum and red blood cells (RBCs), have been scarcely studied. A toxicometabolomics workflow based on high resolution mass spectrometry approaches has been applied to investigate the toxicological effects of Hg in Mus musculus mice after subcutaneous injection for 10 days, which produced inflammation and vacuolization, steatosis and karyolysis in the hepatic tissue. To this end, direct infusion mass spectrometry (DIMS) of polar and lipophilic extracts from serum and RBCs, using positive and negative mode of acquisition (ESI+/ESI-), and gas chromatography-mass spectrometry were used. A quantitative analysis of reversible oxidized thiols in serum proteins demonstrated a strong oxidative stress induction in the liver of Hg-exposed mice. Endogenous metabolites alterations were identified by partial least squares-discriminant analysis (PLS-DA). Mercury-exposed mice show perturbations in energy metabolism, amino acid metabolism, membrane phospholipid breakdown and oxidative stress-related metabolites in serum along the exposure. This work reports for the first time the effects of Hg-exposure on RBCs metabolic pathways, and reveals disturbances in glycolysis, membrane turnover, glutathione and ascorbate metabolisms.

MATERIALS
Product Number
Brand
Product Description

Supelco
Nitric acid concentrate, 0.1 M HNO3 in water (0.1N), eluent concentrate for IC
Sigma-Aldrich
Nitric acid, ACS reagent, ≥90.0%
Sigma-Aldrich
Acetic anhydride, 99.5%
Sigma-Aldrich
Trifluoroacetamide, 97%
Sigma-Aldrich
Chlorotrimethylsilane solution, 1.0 M in THF
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Acetic anhydride, ACS reagent, ≥98.0%
Sigma-Aldrich
Ethanol, absolute, sales not in Germany, ≥99.8% (vol.)
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Uric acid, BioXtra, ≥99% (HPLC)
Sigma-Aldrich
Urea, powder, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Hematoxylin, certified by the BSC
Sigma-Aldrich
Hematoxylin
Sigma-Aldrich
Uric acid, ≥99%, crystalline
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Acetic anhydride, ReagentPlus®, ≥99%
Sigma-Aldrich
Nitric acid, 70%, purified by redistillation, ≥99.999% trace metals basis