Skip to Content
Merck
  • Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction.

Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction.

Biomedical materials (Bristol, England) (2015-01-15)
Lizette Utomo, Mieke M Pleumeekers, Luc Nimeskern, Sylvia Nürnberger, Kathryn S Stok, Florian Hildner, Gerjo J V M van Osch
ABSTRACT

Scaffolds are widely used to reconstruct cartilage. Yet, the fabrication of a scaffold with a highly organized microenvironment that closely resembles native cartilage remains a major challenge. Scaffolds derived from acellular extracellular matrices are able to provide such a microenvironment. Currently, no report specifically on decellularization of full thickness ear cartilage has been published. In this study, decellularized ear cartilage scaffolds were prepared and extensively characterized. Cartilage decellularization was optimized to remove cells and cell remnants from elastic cartilage. Following removal of nuclear material, the obtained scaffolds retained their native collagen and elastin contents as well as their architecture and shape. High magnification scanning electron microscopy showed no obvious difference in matrix density after decellularization. However, glycosaminoglycan content was significantly reduced, resulting in a loss of viscoelastic properties. Additionally, in contact with the scaffolds, human bone-marrow-derived mesenchymal stem cells remained viable and are able to differentiate toward the chondrogenic lineage when cultured in vitro. These results, including the ability to decellularize whole human ears, highlight the clinical potential of decellularization as an improved cartilage reconstruction strategy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Supelco
L-Proline, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Supelco
L-Ascorbic acid, analytical standard
Sigma-Aldrich
L-Proline, 99%, FCC, FG
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
L-Ascorbic acid, tested according to Ph. Eur.
SAFC
L-Proline
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
L-Proline, BioUltra, ≥99.5% (NT)
Supelco
Hydrogen chloride – ethanol, ~1.25 M HCl, derivatization grade (GC derivatization), LiChropur
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), derivatization grade (GC derivatization), LiChropur
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), derivatization grade (GC derivatization), LiChropur
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Selenium, pellets, <5 mm particle size, ≥99.999% trace metals basis
Sigma-Aldrich
Selenium, powder, −100 mesh, ≥99.5% trace metals basis
Sigma-Aldrich
Selenium, pellets, <5 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Sigma-Aldrich
Selenium, powder, −100 mesh, 99.99% trace metals basis
Sigma-Aldrich
Diethyl azodicarboxylate solution, purum, ~40% in toluene (H-NMR)
Sigma-Aldrich
L-Proline, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma